Skip to main content

Advertisement

Log in

Optimum quantum receiver for detecting weak signals in PAM communication systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper deals with the modeling of an optimum quantum receiver for pulse amplitude modulator (PAM) communication systems. The information bearing sequence \(\{I_k\}_{k=0}^{N-1}\) is estimated using the maximum likelihood (ML) method. The ML method is based on quantum mechanical measurements of an observable X in the Hilbert space of the quantum system at discrete times, when the Hamiltonian of the system is perturbed by an operator obtained by modulating a potential V with a PAM signal derived from the information bearing sequence \(\{I_k\}_{k=0}^{N-1}\). The measurement process at each time instant causes collapse of the system state to an observable eigenstate. All probabilities of getting different outcomes from an observable are calculated using the perturbed evolution operator combined with the collapse postulate. For given probability densities, calculation of the mean square error evaluates the performance of the receiver. Finally, we present an example involving estimating an information bearing sequence that modulates a quantum electromagnetic field incident on a quantum harmonic oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shapiro, J.H., Zhang, Z., Wong, F.N.C.: Secure communication via quantum illumination. Quantum Inf. Process. 13(10), 2171–2193 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, New York (1958)

    MATH  Google Scholar 

  3. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049 (1926)

    Article  ADS  MATH  Google Scholar 

  4. Griffiths, D.J.: Introduction to Quantum Mechanics, 2nd edn. Pearson Hall, Oxford (2005)

    Google Scholar 

  5. Christopher, A.F., Carlton, M.C.: Mathematical techniques for quantum communication theory. Open Syst. Inf. Dyn. 3(3), 345–356 (1995)

    Article  MATH  Google Scholar 

  6. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  7. Helstrom, C.W.: Detection theory and quantum mechanics. Inf. Control 10, 254–291 (1967)

    Article  Google Scholar 

  8. Helstrom, C.W.: Detection theory and quantum mechanics (II). Inf. Control 13, 156–171 (1968)

    Article  Google Scholar 

  9. Yuen, H.P., Kennedy, R.S., Lax, M.: On optimal quantum receivers for digital signal detection. Proc. IEEE. 58(10), 1770–1773 (1970)

    Article  Google Scholar 

  10. Li, K., Zuo, Y., Zhu, B.: Suppressing the errors due to mode mismatch for M-ary PSK quantum receivers using photon-number-resolving detector. IEEE Photon. Technol. Lett. 25(22), 2182–2184 (2013)

    Article  ADS  Google Scholar 

  11. Shi, J., Shi, R., Guo, Y., Peng, X., Lee, M.H.: Probabilistic quantum relay communication in the noisy channel with analogous space–time code. Quantum Inf. Process. 12, 1859–1870 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kato, K., Hirota, O.: Square-root measurement for quantum symmetric mixed state signals. IEEE Trans. Inf. Theory 49(12), 3312–3317 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Atmanspacher, H., Kurths, J., Scheingraber, H., Wackerbauer, R., Witt, A.: Complexity and meaning in nonlinear dynamical systems. Open Syst. Inf. Dyn. 1(2), 269–289 (1992)

    Article  MATH  Google Scholar 

  14. Holevo, A.S.: Statistical decision theory for quantum systems. J. Multivar. Anal. 3, 337–394 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yuen, H.P., Kennedy, R.S., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory 21(2), 125–134 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Helstrom, C.W.: Bayes-cost reduction algorithm in quantum hypothesis testing. IEEE Trans. Inf. Theory 28(2), 359–366 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kennedy, R.S.: A near-optimum receiver for the binary coherent state quantum channel. Research Laboratory of Electronics MIT Cambridge Technical Report 108 (1973)

  18. Dolinar, S.J.: An optimum receiver for the binary coherent state quantum channel. Research Laboratory of Electronics MIT Cambridge Technical Report 111 (1973)

  19. Sasaki, M., Hirota, O.: Optimum decision scheme with a unitary control process for binary quantum-state signals. Phys. Rev. A 54, 2728 (1996)

    Article  ADS  Google Scholar 

  20. Wang, D., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Practicle single-photon-assisted remote state preparation with non-maximally entenglement. Quantum Inf. Process. 15, 3367–3381 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wang, D., Hu, Y.D., Wang, Z.Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three-and four-particle W-class entangled states. Quantum Inf. Process. 14(6), 2135–2151 (2015)

    Article  ADS  MATH  Google Scholar 

  22. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  23. Wang, D., Hoen, R.D., Ye, L., Kais, S.: Generalized remote preparation of arbitrary \(m\)-qubit entagled states via genuine entanglements. Entropy 17, 1755–1774 (2015)

    Article  ADS  Google Scholar 

  24. Li, X., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14(12), 4585–4592 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  26. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722 (1996)

    Article  ADS  Google Scholar 

  27. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  28. Feng, G., Xu, G., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110(19), 190501 (2013)

    Article  ADS  Google Scholar 

  29. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88(1), 012302 (2013)

    Article  ADS  Google Scholar 

  30. Li, T., Long, G.L.: Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A 94(2), 022343 (2016)

    Article  ADS  Google Scholar 

  31. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002)

    Article  ADS  Google Scholar 

  32. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Long, G.L., Xiao, L.: Parallel quantum computing in a single ensemble quantum computer. Phys. Rev. A 69(5), 052303 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  34. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  35. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  36. Yu, R.F., Lin, Y.J., Zhou, P.: Joint remote preparation of arbitrary two-and three-photon state with linear-optical elements. Quantum Inf. Process. 15(11), 4785–4803 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87(2), 022305 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  39. Hayashi, M.: Universal coding for classical-quantum channel. Commun. Math. Phys. 289, 1087–1098 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, pp. 171–286. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  41. Parthasarathy, K.R.: Coding Theorems of Classical and Quantum Information Theory. Hindustan Book Agency, Gurugram (2013)

    Book  MATH  Google Scholar 

  42. Dowker, F., Tabatabai, Y.G.: Dynamical wavefunction collapse models in quantum measure theory. J. Phys. A Math. Theor. 41(20), 205306 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Rathee, A., Parthasarathy, H.: Perturbation-based stochastic modeling of nonlinear circuits. Circuits Syst. Signal Process. 32, 123–142 (2013)

    Article  MathSciNet  Google Scholar 

  44. Mensky, M., Audretsch, J.: Continuous QND measurements: no quantum noise. J. Appl. Phys. B 64(2), 129–136 (1997)

    Article  ADS  Google Scholar 

  45. Srikanth, R.: A computational model for quantum measurement. Quantum Inf. Process. 2(3), 153–199 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Brickmont, J., Kupiainen, A.: Towards a derivation of Fouriers law for coupled anharmonic oscillators. Commun. Math. Phys. 274, 555–626 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Gautam, K., Chauhan, G., Rawat, T.K., Parthasarathy, H., Sharma, N.: Realization of quantum gates based on three-dimensional harmonic oscillator in a time-varying electromagnetic field. Quantum Inf. Process. 14(9), 3279–3302 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Gautam, K., Rawat, T.K., Parthasarathy, H., Sharma, N.: Realization of commonly used quantum gates using perturbed harmonic oscillator. Quantum Inf. Process. 14(9), 3257–3277 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Gisin, N., Popescu, S., Scarani, V., Wolf, S., Wullschleger, J.: Oblivious transfer and quantum channels as communication resources. Nat. Comput. 12(1), 13–17 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Karlsson, A., Björk, G.: Quantum correlations in dual quantum measurements. J. Appl. Phys. B 64(2), 235–241 (1997)

    Article  ADS  Google Scholar 

  51. Garg, N., Parthasarathy, H., Upadhyay, D.K.: Real-time simulation of H–P noisy Schrödinger equation and Belavkin filter. Quantum Inf. Process. (2017). doi:10.1007/s11128-017-1572-4

  52. Gautam, K., Rawat, T.K., Parthasarathy, H., Sharma, N., Upadhyaya, V.: Realization of the three-qubit quantum controlled gate based on matching Hermitian generators. Quantum Inf. Process. 16(5), 113 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is deeply indebted to Professors Harish Parthasarathy and Dr. Tarun Kumar Rawat for offering invaluable comments and suggestions. He is very grateful to Kumar Gautam for stimulating discussions and invaluable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneet Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Rawat, T.K., Parthasarathy, H. et al. Optimum quantum receiver for detecting weak signals in PAM communication systems. Quantum Inf Process 16, 208 (2017). https://doi.org/10.1007/s11128-017-1660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1660-5

Keywords

Navigation