Skip to main content
Log in

Effect of local noise for achieving nonlocal advantage of quantum coherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate steering, Bell nonlocality and nonlocal advantage of quantum coherence for entangled pure states. We find that there are nonlocal states which cannot achieve a nonlocal advantage of quantum coherence. In addition, we explore the effect of local noise for achieving nonlocal advantage of quantum coherence. It shows that, with the increase in noise parameter, it is difficult to achieve nonlocal advantage of quantum coherence and when the noise parameter is beyond a certain value, nonlocal advantage of quantum coherence cannot be achieved. Compared with steering and Bell nonlocality, the effect of local noise for achieving nonlocal advantage of quantum coherence is dominated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  2. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  3. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 021001 (2015)

    Google Scholar 

  4. Engel, G.S.: Evidence for Wavelike Energy Transfer Through Quantum Coherence in Photosynthetic Systems. Nature, London (2007)

    Google Scholar 

  5. Romero, E., Augulis, R., Novoderezhkin, V.I., Ferretti, M., Thieme, J., Zigmantas, D., van Grondelle, R.: Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Phys. 10, 676 (2014)

    Article  Google Scholar 

  6. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  7. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  8. Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  9. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  11. Schrődinger, E.: Probability relations between separated systems. Proc. Camb. Philos. Soc. 32, 446 (1936)

    Article  ADS  MATH  Google Scholar 

  12. Einstein, A., Podolsky, D., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. A 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  13. Quintino, M.T., Vertesi, T., Brunner, N.: Joint measurability: Einstein–Podolsky–Rosen steering and Bell nonlocality. Phys. Rev. Lett. 113, 160402 (2014)

    Article  ADS  Google Scholar 

  14. Bowles, J., Vertesi, T.: One-way Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112, 200402 (2014)

    Article  ADS  Google Scholar 

  15. Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein–Podolsky–Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Law, Y.Z., Thinh, L.P., Bancal, J.D., Scarani, V.: Quantum randomness extraction for various levels of characterization of the devices. J. Phys. A 47, 424028 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Piani, M., Watrous, J.: Experimental quantification of asymmetric Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 114, 060404 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Branciard, C., Gisin, N.: Phys. Rev. Lett. 107, 020401 (2011)

    Article  ADS  Google Scholar 

  19. Saunders, D.J., Jones, S.J., Wiseman, H.M., Pryde, G.J.: Experimental EPR-steering using Bell-local states. Nat. Phys. 6, 845 (2010)

    Article  Google Scholar 

  20. Handchen, V., Eberle, T., Steinlechner, S., Samblowski, A., Franz, T., Werner, R.F., Schnabel, R.: Observation of one-way Einstein–Podolsky–Rosen steering. Nat. Photon. 6, 596 (2012)

    Article  ADS  Google Scholar 

  21. Wittmann, B., Ramelow, S.: Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering. New J. Phys. 14, 053030 (2012)

    Article  ADS  Google Scholar 

  22. Mondal, D., Pramanik, T., Pati, A.K.: Nonlocal advantage of quantum coherence. Phys. Rev. A 95, 010301 (R) (2017)

    Article  ADS  Google Scholar 

  23. Hu, X.Y., Milne, A., Zhang, B., Fan, H.: Quantum coherence of steered states. Sci. Rep. 6, 19365 (2016)

    Article  ADS  Google Scholar 

  24. Hu, X.Y., Fan, H.: Extracting quantum coherence via steering. Sci. Rep. 6, 34380 (2016)

    Article  ADS  Google Scholar 

  25. Mondal, D., Mukhopadhyay, C.: Steerability of quantum coherence in accelerated frame (2015). arXiv:1510.07556

  26. Du, M.M., Wang, D., Ye, L.: The dynamic behaviors of complementary correlations under decoherence channels. Sci. Rep. 7, 40934 (2017)

    Article  ADS  Google Scholar 

  27. Liu, X., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  29. Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303 (R) (2017)

    Article  Google Scholar 

  30. Silva, I.A., et al.: Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett. 117, 160402 (2016)

    Article  ADS  Google Scholar 

  31. Bromley, T.R., Cianciaruso, M., Lo Franco, R., Adesso, G.: Unifying approach to the quantification of bipartite correlations by Bures distance. J. Phys. A Math. Theor. 47, 405302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Aaronson, B., Lo Franco, R., Adesso, G.: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)

    Article  ADS  Google Scholar 

  33. Aaronson, B., Lo Franco, R., Compagno, G., Adesso, G.: Hierarchy and dynamics of trace distance correlations. New J. Phys. 15, 093022 (2013)

    Article  ADS  Google Scholar 

  34. Cianciaruso, M., Bromley, T.R., Roga, W., Lo Franco, R., Adesso, G.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

    Article  ADS  Google Scholar 

  35. Xu, J.S., et al.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    Google Scholar 

  36. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource (2017). arXiv:1609.02439

  37. Cavalcanti, E.G., Jones, S.J., Wiseman, H.M., Reid, M.D.: Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox. Phys. Rev. A 80, 032112 (2009)

    Article  ADS  Google Scholar 

  38. Costa, A.C.S., Angelo, R.M.: Dissociation products and structures of solid H2S at strong compression. Phys. Rev. A 93, 020103 (R) (2016)

    Article  ADS  Google Scholar 

  39. Sun, W.Y., et al.: Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs. Sci. Rep. 7, 39651 (2017)

    Article  ADS  Google Scholar 

  40. Hu, X.Y.: Channels that do not generate coherence. Phys. Rev. A 94, 012326 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China under Grant Nos. 11575001 and 61601002 and also by the fund of Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, MM., Wang, D. & Ye, L. Effect of local noise for achieving nonlocal advantage of quantum coherence. Quantum Inf Process 16, 218 (2017). https://doi.org/10.1007/s11128-017-1663-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1663-2

Keywords