Abstract
In this paper, we investigate steering, Bell nonlocality and nonlocal advantage of quantum coherence for entangled pure states. We find that there are nonlocal states which cannot achieve a nonlocal advantage of quantum coherence. In addition, we explore the effect of local noise for achieving nonlocal advantage of quantum coherence. It shows that, with the increase in noise parameter, it is difficult to achieve nonlocal advantage of quantum coherence and when the noise parameter is beyond a certain value, nonlocal advantage of quantum coherence cannot be achieved. Compared with steering and Bell nonlocality, the effect of local noise for achieving nonlocal advantage of quantum coherence is dominated.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)
Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)
Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 021001 (2015)
Engel, G.S.: Evidence for Wavelike Energy Transfer Through Quantum Coherence in Photosynthetic Systems. Nature, London (2007)
Romero, E., Augulis, R., Novoderezhkin, V.I., Ferretti, M., Thieme, J., Zigmantas, D., van Grondelle, R.: Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Phys. 10, 676 (2014)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)
Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)
Schrődinger, E.: Probability relations between separated systems. Proc. Camb. Philos. Soc. 32, 446 (1936)
Einstein, A., Podolsky, D., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. A 47, 777 (1935)
Quintino, M.T., Vertesi, T., Brunner, N.: Joint measurability: Einstein–Podolsky–Rosen steering and Bell nonlocality. Phys. Rev. Lett. 113, 160402 (2014)
Bowles, J., Vertesi, T.: One-way Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112, 200402 (2014)
Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein–Podolsky–Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)
Law, Y.Z., Thinh, L.P., Bancal, J.D., Scarani, V.: Quantum randomness extraction for various levels of characterization of the devices. J. Phys. A 47, 424028 (2014)
Piani, M., Watrous, J.: Experimental quantification of asymmetric Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 114, 060404 (2015)
Branciard, C., Gisin, N.: Phys. Rev. Lett. 107, 020401 (2011)
Saunders, D.J., Jones, S.J., Wiseman, H.M., Pryde, G.J.: Experimental EPR-steering using Bell-local states. Nat. Phys. 6, 845 (2010)
Handchen, V., Eberle, T., Steinlechner, S., Samblowski, A., Franz, T., Werner, R.F., Schnabel, R.: Observation of one-way Einstein–Podolsky–Rosen steering. Nat. Photon. 6, 596 (2012)
Wittmann, B., Ramelow, S.: Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering. New J. Phys. 14, 053030 (2012)
Mondal, D., Pramanik, T., Pati, A.K.: Nonlocal advantage of quantum coherence. Phys. Rev. A 95, 010301 (R) (2017)
Hu, X.Y., Milne, A., Zhang, B., Fan, H.: Quantum coherence of steered states. Sci. Rep. 6, 19365 (2016)
Hu, X.Y., Fan, H.: Extracting quantum coherence via steering. Sci. Rep. 6, 34380 (2016)
Mondal, D., Mukhopadhyay, C.: Steerability of quantum coherence in accelerated frame (2015). arXiv:1510.07556
Du, M.M., Wang, D., Ye, L.: The dynamic behaviors of complementary correlations under decoherence channels. Sci. Rep. 7, 40934 (2017)
Liu, X., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102 (2016)
Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)
Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303 (R) (2017)
Silva, I.A., et al.: Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett. 117, 160402 (2016)
Bromley, T.R., Cianciaruso, M., Lo Franco, R., Adesso, G.: Unifying approach to the quantification of bipartite correlations by Bures distance. J. Phys. A Math. Theor. 47, 405302 (2014)
Aaronson, B., Lo Franco, R., Adesso, G.: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)
Aaronson, B., Lo Franco, R., Compagno, G., Adesso, G.: Hierarchy and dynamics of trace distance correlations. New J. Phys. 15, 093022 (2013)
Cianciaruso, M., Bromley, T.R., Roga, W., Lo Franco, R., Adesso, G.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)
Xu, J.S., et al.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)
Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource (2017). arXiv:1609.02439
Cavalcanti, E.G., Jones, S.J., Wiseman, H.M., Reid, M.D.: Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox. Phys. Rev. A 80, 032112 (2009)
Costa, A.C.S., Angelo, R.M.: Dissociation products and structures of solid H2S at strong compression. Phys. Rev. A 93, 020103 (R) (2016)
Sun, W.Y., et al.: Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs. Sci. Rep. 7, 39651 (2017)
Hu, X.Y.: Channels that do not generate coherence. Phys. Rev. A 94, 012326 (2016)
Acknowledgements
This work is supported by the National Science Foundation of China under Grant Nos. 11575001 and 61601002 and also by the fund of Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Du, MM., Wang, D. & Ye, L. Effect of local noise for achieving nonlocal advantage of quantum coherence. Quantum Inf Process 16, 218 (2017). https://doi.org/10.1007/s11128-017-1663-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1663-2