Abstract
Quantum phase transitions can be understood in terms of Landau’s symmetry-breaking theory. Following the discovery of the quantum Hall effect, a new kind of quantum phase can be classified according to topological rather than local order parameters. Both phases coexist for a class of exactly solvable quantum Ising models, for which the ground state energy density corresponds to a loop in a two-dimensional auxiliary space. Motivated by this we study quantum correlations, measured by entanglement and quantum discord, and critical behavior seen in the one-dimensional extended Ising model with short-range interaction. We show that the quantum discord exhibits distinctive behaviors when the system experiences different topological quantum phases denoted by different topological numbers. Quantum discords capability to detect a topological quantum phase transition is more reliable than that of entanglement at both zero and finite temperatures. In addition, by analyzing the divergent behaviors of quantum discord at the critical points, we find that the quantum phase transitions driven by different parameters of the model can also display distinctive critical behaviors, which provides a scheme to detect the topological quantum phase transition in practice.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Sachdev, S.: Quantum Phase Transition. Cambridge University Press, Cambridge (2011)
Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)
Qi, X.L., Zhang, S.C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)
Zhang, G., Song, Z.: Topological characterization of extended quantum Ising models. Phys. Rev. Lett. 115, 177204 (2015)
Kopp, A., Chakravarty, S.: Criticality in correlated quantum matter. Nat. Phys. 1, 53 (2005)
Quan, H.T., Song, Z., Liu, X.F., Zanardi, P., Sun, C.P.: Decay of loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett. 96, 140604 (2006)
Zhu, S.L.: Scaling of geometric phases close to the quantum phase transition in the XY spin chain. Phys. Rev. Lett. 96, 077206 (2006)
Zanardi, P., Quan, H.T., Wang, X.G., Sun, C.P.: Mixed-state fidelity and quantum criticality at finite temperature. Phys. Rev. A 75, 032109 (2007)
Divakaran, U.: Three-site interacting spin chain in a staggered field: fidelity versus Loschmidt echo. Phys. Rev. E 88, 052122 (2013)
Dutta, A., Aeppli, G., Chakrabarti, B.K., Divakaran, U., Rosenbaum, T., Sen, D.: Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information. Cambridge University Press, Cambridge (2015)
Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002)
Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)
Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)
Gu, S.S., Deng, S.S., Li, Y.Q., Lin, H.Q.: Entanglement and quantum phase transition in the extended Hubbard model. Phys. Rev. Lett. 93, 086402 (2004)
Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)
Legeza, O., Sólyom, J.: Two-site entropy and quantum phase transitions in low-dimensional models. Phys. Rev. Lett. 96, 116401 (2006)
Song, S.Q., Gu, J.L.: Local entanglement and quantum phase transition in a one-dimensional transverse field Ising model. Phys. Rev. A 74, 032308 (2006)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)
Li, Y.C., Lin, H.Q.: Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction. Phys. Rev. A 83, 052323 (2011)
Liu, B.Q., Shao, B., Li, J.G., Zou, J., Wu, L.A.: Quantum and classical correlations in the one-dimensional XY model with Dzyaloshinskii-Moriya interaction. Phys. Rev. A 83, 052112 (2011)
Maziero, J., Guzman, H.C., Céleri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-1/2 chain. Phys. Rev. A 82, 012106 (2010)
Campbell, S., Richens, J., Nicola, L.G., Busch, T.: Criticality, factorization, and long-range correlations in the anisotropic X Y model. Phys. Rev. A 88, 062305 (2013)
Çakmak, B., Karpat, G., Gedik, Z.: Critical point estimation and long-range behavior in the one-dimensional XY model using thermal quantum and total correlations. Phys. Lett. A 376, 2982 (2012)
Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)
Altintas, F., Eryigit, R.: Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems. Ann. Phys. 327, 3084 (2012)
Werlang, T., Ribeiro, G.A.P., Rigolin, G.: Interplay between quantum phase transitions and the behavior of quantum correlations at finite temperatures. Int. J. Mod. Phys. B 27, 1345032 (2013)
Guo, J.G., Zhang, X.Z.: Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction. Sci. Rep. 6, 32634 (2016)
Cai, J.M., Zhou, Z.W., Guo, G.C.: Robustness of entanglement as a signature of quantum phase transitions. Phys. Lett. A 352, 196 (2006)
Wang, X., Zanardi, P.: Quantum entanglement and Bell inequalities in Heisenberg spin chains. Phys. Lett. A 301, 1 (2002)
Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. (N.Y.) 16, 407 (1961)
Barouch, E., McCoy, B.M.: Statistical mechanics of the XY model. II. Spin-Correlation functions. Phys. Rev. A 3, 786 (1971)
Lou, P., Lee, J.Y.: Block-block entanglement and quantum phase transition in the spin-1/2 XX chain. Phys. Rev. B 74, 134402 (2006)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Zhang, G., Li, C., Song, Z.: Majorana charges, winding numbers and Chern numbers in quantum Ising models. arXiv:1606.00420
Acknowledgements
This work was supported by the National Natural Science Foundation of China Grant Nos. 11305114, and 11505126. X.Z.Z. is also supported by Ph.D. research startup foundation of Tianjin Normal University under Grant No. 52XB1415.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, XZ., Guo, JL. Quantum correlation and quantum phase transition in the one-dimensional extended Ising model. Quantum Inf Process 16, 223 (2017). https://doi.org/10.1007/s11128-017-1670-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1670-3