Abstract
Non-Hermitian Hamiltonians are an effective tool for describing the dynamics of open quantum systems. Previous research shows that the restrictions of conventional quantum mechanics may be violated in the non-Hermitian cases. We studied the entropy of a system of entangled qubits governed by a local non-Hermitian Hamiltonian operator. We find that local non-Hermitian operation influences the entropies of the two subsystems equally and simultaneously. This indicates that non-Hermitian operators possess the property of non-locality, which makes information exchange possible between subsystems. These information exchanges reduce the uncertainty of outcomes associated with two incompatible quantum measurements.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(\cal{PT}\)-symmetry. Phys. Rev. Lett. 80, 5243 (1998)
Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)
Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2006)
Mostafazadeh, A.: Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians. J. Math. Phys. 43, 6343 (2002)
Mostafazadeh, A.: Pseudo-Hermiticity versus \({\cal{PT}}\)-symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205 (2002)
Mostafazadeh, A.: Pseudo-Hermiticity versus \({\cal{PT}}\)-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 43, 2814 (2002)
Mostafazadeh, A.: Pseudo-Hermiticity versus \({\cal{PT}}\)-symmetry III: equivalence of pseudo-Hermiticity and the presence of antilinear symmetries. J. Math. Phys. 43, 3944 (2002)
Rüter, C.E., Makris, K.G., El-Ganainy, R., et al.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192 (2010)
Regensburger, A., Bersch, C., Miri, M-Ali, Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167 (2012)
Peng, B., Özdemir, S.K., Lei, F.C., et al.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014)
Tang, J.S., Wang, Y.T., Yu, S., et al.: Experimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system. Nat. photon. 10, 642 (2016)
Sergi, A., Zloshchastiev, K.G.: Non-Hermitian quantum dynamics of a two-level system and models of dissipative environments. Int. J. Mod. Phys. B 27, 1345053 (2013)
Zloshchastiev, K.G., Sergi, A.: Comparison and unification of non-Hermitian and Lindblad approaches with applications to open quantum optical system. J. Mod. Opt. 61, 1298 (2014)
Sergi, A., Zloshchastiev, K.G.: Time correlation functions for non-Hermitian quantum systems. Phys. Rev. A 91, 062108 (2015)
Sergi, A.: Embedding quantum systems with a non-conserved probability in classical environments. Theor. Chem. Acc. 134, 79 (2015)
Sergi, A., Zloshchastiev, K.G.: Quantum entropy of systems described by non-Hermitian Hamiltonians. J. Stat. 3, 033102 (2016)
Sergi, A., Giaquinta, P.V.: Linear quantum entropy and Non-Hermitian Hamiltonians. Entropy 18, 451 (2016)
Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007)
Lee, Y.C., Hsieh, M.H., Flammia, S.T., Lee, R.K.: Local \({\cal{PT}}\)-symmetry violates the no-signaling principle. Phys. Rev. Lett. 112, 130404 (2014)
Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)
Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)
Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)
Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)
Bialynicki-Birula, I.: AIP Conference Proceedings, vol. 889, p. 52 (2006)
Renes, J.M., Boileau, J.-C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)
Bertal, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Chen, S.L., Chen, G.Y., Chen, Y.N.: Increase of entanglement by local \({\cal{PT}}\)-symmetric operations. Phys. Rev. A 90, 054301 (2014)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant No. 11374096) and Hunan Provincial Natural Science Foundation of China (Grant No. 2017JJ3046).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, SY., Fang, MF. & Xu, L. Quantum entropy of non-Hermitian entangled systems. Quantum Inf Process 16, 234 (2017). https://doi.org/10.1007/s11128-017-1685-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1685-9