Skip to main content

Advertisement

Log in

Quantum entropy of non-Hermitian entangled systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Non-Hermitian Hamiltonians are an effective tool for describing the dynamics of open quantum systems. Previous research shows that the restrictions of conventional quantum mechanics may be violated in the non-Hermitian cases. We studied the entropy of a system of entangled qubits governed by a local non-Hermitian Hamiltonian operator. We find that local non-Hermitian operation influences the entropies of the two subsystems equally and simultaneously. This indicates that non-Hermitian operators possess the property of non-locality, which makes information exchange possible between subsystems. These information exchanges reduce the uncertainty of outcomes associated with two incompatible quantum measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(\cal{PT}\)-symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. Mostafazadeh, A.: Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians. J. Math. Phys. 43, 6343 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Mostafazadeh, A.: Pseudo-Hermiticity versus \({\cal{PT}}\)-symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Mostafazadeh, A.: Pseudo-Hermiticity versus \({\cal{PT}}\)-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 43, 2814 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Mostafazadeh, A.: Pseudo-Hermiticity versus \({\cal{PT}}\)-symmetry III: equivalence of pseudo-Hermiticity and the presence of antilinear symmetries. J. Math. Phys. 43, 3944 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Rüter, C.E., Makris, K.G., El-Ganainy, R., et al.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192 (2010)

    Article  Google Scholar 

  9. Regensburger, A., Bersch, C., Miri, M-Ali, Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167 (2012)

    Article  ADS  Google Scholar 

  10. Peng, B., Özdemir, S.K., Lei, F.C., et al.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014)

    Article  Google Scholar 

  11. Tang, J.S., Wang, Y.T., Yu, S., et al.: Experimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system. Nat. photon. 10, 642 (2016)

    Article  ADS  Google Scholar 

  12. Sergi, A., Zloshchastiev, K.G.: Non-Hermitian quantum dynamics of a two-level system and models of dissipative environments. Int. J. Mod. Phys. B 27, 1345053 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zloshchastiev, K.G., Sergi, A.: Comparison and unification of non-Hermitian and Lindblad approaches with applications to open quantum optical system. J. Mod. Opt. 61, 1298 (2014)

    Article  ADS  Google Scholar 

  14. Sergi, A., Zloshchastiev, K.G.: Time correlation functions for non-Hermitian quantum systems. Phys. Rev. A 91, 062108 (2015)

    Article  ADS  Google Scholar 

  15. Sergi, A.: Embedding quantum systems with a non-conserved probability in classical environments. Theor. Chem. Acc. 134, 79 (2015)

    Article  Google Scholar 

  16. Sergi, A., Zloshchastiev, K.G.: Quantum entropy of systems described by non-Hermitian Hamiltonians. J. Stat. 3, 033102 (2016)

    MathSciNet  Google Scholar 

  17. Sergi, A., Giaquinta, P.V.: Linear quantum entropy and Non-Hermitian Hamiltonians. Entropy 18, 451 (2016)

    Article  ADS  Google Scholar 

  18. Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Lee, Y.C., Hsieh, M.H., Flammia, S.T., Lee, R.K.: Local \({\cal{PT}}\)-symmetry violates the no-signaling principle. Phys. Rev. Lett. 112, 130404 (2014)

    Article  ADS  Google Scholar 

  20. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  21. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  22. Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  24. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  25. Bialynicki-Birula, I.: AIP Conference Proceedings, vol. 889, p. 52 (2006)

  26. Renes, J.M., Boileau, J.-C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)

    Article  ADS  Google Scholar 

  27. Bertal, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  28. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  29. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Chen, S.L., Chen, G.Y., Chen, Y.N.: Increase of entanglement by local \({\cal{PT}}\)-symmetric operations. Phys. Rev. A 90, 054301 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11374096) and Hunan Provincial Natural Science Foundation of China (Grant No. 2017JJ3046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Yang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SY., Fang, MF. & Xu, L. Quantum entropy of non-Hermitian entangled systems. Quantum Inf Process 16, 234 (2017). https://doi.org/10.1007/s11128-017-1685-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1685-9

Keywords