Abstract
The behavior of bipartite and tripartite entanglement in Heisenberg \(XXZ+h\) spins chain is investigated with the size of system using the approach of quantum renormalization group method. In thermodynamics limit, both types of entanglement exhibit quantum phase transition (QPT). The boundary of QPT links the phases of saturated entanglement and zero entanglement. The first derivative of both entanglements becomes discontinuous at the critical point, which corresponds to the second-order phase transition. Furthermore, the amount of saturated bipartite entanglement strongly depends on relative positions of spins, while tripartite entanglement is robust than bipartite entanglement. It turns out that the tripartite entanglement can be a better candidate than bipartite entanglement for analyzing QPT and implementing quantum information tasks.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, k: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Einstein, A., Podolsky, P., Rosen, N.: Can quantum mechanical description of physical reality be considered complete. Phys. Rev. 47, 777 (1935)
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)
Horodecki, M.: Entanglement measures. Quantum Inf. Comput. I, 3 (2001)
Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27 (2001)
Wang, X.: Threshold temperature for pairwise and many-particle thermal entanglement in the isotropic Heisenberg model. Phys. Rev. A 66, 044305 (2002)
Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)
Liu, C., Xu, S., He, J., Ye, L.: Unveiling Pi-tangle and quantum phase transition in the one-dimensional anisotropic XY model. Quantum Inf. Process. 14, 2013–2024 (2015)
Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002)
Vidal, G., Latorre, J., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)
Vidal, G., Palacios, G., Mosseri, R.: Entanglement in a second-order quantum phase transition. Phy. Rev. A 69, 022107 (2004)
Lambert, N., Emary, C., Brandes, T.: Entanglement and the phase transition in single mode superradiance. Phys. Rev. Lett. 92, 073602 (2004)
Justino, L., Oliveira, D.: Bell inequalities and entanglement at quantum phase transitions in the XXZ model. Phys. Rev. A 85, 052128 (2012)
Girolami, D., Adesso, G.: Observable measure of bipartite quantum correlations. Phys. Rev. Lett 108, 150403 (2012)
Liu, B., Shao, B., Li, J., Zou, J., Wu, L.: Quantum and classical correlations in the one-dimensional XY model with Dzyaloshinskii–Moriya interaction. Phys. Rev. A 83, 052112 (2011)
Mandel, O., Greiner, M., Widera, A., Rom, T., Hansch, W., Bloch, I.: Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937 (2003)
Roos, C.F., et al.: Control and measurement of three-qubit entangled states. Science 304, 1478 (2004)
de Oliveira, T.R., Rigolin, G., de Oliveira, M.C., Miranda, E.: Multipartite entanglement signature of quantum phase transitions. Phys. Rev. Lett. 97, 170401 (2006)
de Oliveira, T.R., Rigolin, G., de Oliveira, M.C., Miranda, E.: Genuine multipartite entanglement in quantum phase transitions. Phys. Rev. A 73, 010305(R) (2008)
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems Rev. Mod. Phys. 80, 517 (2008)
Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)
Jafari, R.: Quantum renormalization group approach to geometric phases in spin chains. Phys. Lett. A 377, 3279 (2013)
Werlang, T., Ribeiro, G.A.P., Rigolin, G.: Spotlighting quantum critical points via quantum correlations at finite temperatures. Phys. Rev. A 83, 062334 (2011)
White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992)
White, S.R., Scalapino, D.J.: Density matrix renormalization group study of the striped Phase in the 2D tJ model. Phys. Rev. Lett. 80, 1272 (1998)
Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii–Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79, 042319 (2009)
Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B 78, 214414 (2008)
Langari, A.: Quantum renormalization group of XYZ model in a transverse magnetic field. Phys. Rev. B 69, 100402 (2004)
Usman, M., Ilyas, A., Khan, K.: Quantum renormalization group of the XY model in two dimensions. Phys. Rev. A 92, 032327 (2015)
Ma, F.W., Liu, S.X., Kong, X.M.: Entanglement and quantum phase transition in the one-dimensional anisotropic XY model. Phys. Rev. A 83, 062309 (2011)
Jafari, R., Langari, A.: Second order quantum renormalisation group of XXZ chain with next-nearest neighbour interactions. Phys. A 364, 213 (2006)
Jafari, R., Langari, A.: Phase diagram of the one-dimensional S = 1/2 XXZ model with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions. Phys. Rev. B 76, 014412 (2007)
Ma, F.W., Liu, S.X., Kong, X.M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii–Moriya interaction. Phys. Rev. A 84, 042302 (2011)
Kargarian, M., Jafari, R., Langari, A.: Renormalization of concurrence: the application of the quantum renormalization group to quantum-information systems. Phys. Rev. A 76, 060304 (2007)
Sun, W.Y., Shi, J.D., Wang, D., Ye, L.: Exploring the global entanglement and quantum phase transition in the spin 1/2XXZ model with Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 15, 245253 (2016)
Shi, J.D., Wang, D., Ye, L.: Genuine multipartite entanglement as the indicator of quantum phase transition in spin systems. Quantum Inf. Process. 15, 4629–4640 (2016)
Martin, M.A., Sierra, G.: Analytic formulation of the density matrix renormalization group. Int. J. Mod. Phys. A 11, 3145 (1996)
Martin, M.A., Sierra, G.: Real space renormalization group methods and quantum Groups. Phys. Rev. Lett. 76, 1146 (1996)
Langari, A.: Phase diagram of the antiferromagnetic XXZ model in the presence of an external magnetic field. Phys. Rev. B 58, 14467 (1998)
Li, M., Fei, S.M., Wang, Z.X.: A lower bound of concurrence for multipartite quantum states. J. Phys. A 42, 145303 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Joyia, W., Khan, K. Exploring the tripartite entanglement and quantum phase transition in the \(XXZ+h\) model. Quantum Inf Process 16, 243 (2017). https://doi.org/10.1007/s11128-017-1693-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1693-9