Skip to main content
Log in

Enhancing the quantum state transfer between two atoms in separate cavities via weak measurement and its reversal

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Taking the advantage of weak measurement and quantum measurement reversal, we propose a scheme to enhance the fidelity of transferring quantum state from one atom trapped in cavity to another distant one trapped in another cavity which is coupled by an optical fiber. It is turned out that the fidelity can be greatly improved even when the system is under serious dissipation. Moreover, the scheme works in both the strong-coupling and weak-coupling regimes. It is also robust to the ratio of the coupling constant between the atoms and the cavity modes to the coupling constant between the fiber and cavity modes. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Lloyd, S.: A potentially realizable quantum computer. Science 261, 1569–1571 (1993)

    Article  ADS  Google Scholar 

  3. Cirac, J.I., Zoller, P., Kimble, H.J., et al.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  4. Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242–5245 (1997)

    Article  ADS  Google Scholar 

  5. Chou, C.W., Laurat, J., Deng, H., Choi, K.S., et al.: Functional quantum nodes for entanglement distribution over scalable quantum network. Science 316, 1316–1320 (2007)

    Article  ADS  Google Scholar 

  6. Boozer, A.D., Miller, R., Northup, T.E., Boca, A., Kimble, H.J.: Optical pumping via incoherent Raman transitions. Phys. Rev. A 76, 063401 (2007)

    Article  ADS  Google Scholar 

  7. Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)

    Article  ADS  Google Scholar 

  8. Chen, L.B., Ye, M.Y., Lin, G.W., Du, Q.H., Lin, X.M.: Generation of entanglement via adiabatic passage. Phys. Rev. A 76, 062304 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ye, S.Y., Zhong, Z.R., Zheng, S.B.: Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities. Phys. Rev. A 77, 014303 (2008)

    Article  ADS  Google Scholar 

  10. Lü, X.Y., Si, L.G., Hao, X.Y., Yang, X.X.: Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes. Phys. Rev. A 79, 052330 (2009)

    Article  ADS  Google Scholar 

  11. Zheng, S.B., Yang, Z.B., Xia, Y.: Generation of two-mode squeezed states for two separated atomic ensembles via coupled cavities. Phys. Rev. A 81, 015804 (2010)

    Article  ADS  Google Scholar 

  12. Li, Y.L., Fang, M.F., Xiao, X., Zeng, K., Wu, C.: Greenberger–Horne–Zeilinger state generation of three atoms trapped in two remote cavities. J. Phys. B At. Mol. Opt. Phys. 43, 085501 (2010)

    Article  ADS  Google Scholar 

  13. Li, W.A., Huang, G.Y.: Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A 83, 022322 (2011)

    Article  ADS  Google Scholar 

  14. Li, W.A., Wei, L.F.: Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics. Opt. Express 20, 13440–13450 (2012)

    Article  ADS  Google Scholar 

  15. Shi, Z.C., Xia, Y., Song, J., Song, H.S.: Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics. Quantum Inf. Process. 12, 411–424 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chen, Y.H., Xia, Y., Chen, Q.Q., et al.: Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states preparation and transition. Laser Phys. Lett. 11, 115201 (2014)

    Article  ADS  Google Scholar 

  17. Shan, W.J., Xia, Y., Chen, Y.H., et al.: Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving. Quantum Inf. Process. 15, 2359–2376 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Zheng, S.B.: Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities. Appl. Phys. Lett. 94, 154101 (2009)

    Article  ADS  Google Scholar 

  19. Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null-and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)

    Article  ADS  Google Scholar 

  20. Li, Y.L., Fang, M.F., Xiao, X., Wu, C.: Implementation of a remote three-qubit controlled-Z gate for atoms separately trapped in cavities coupled by optical fibres. J. Phys. B At. Mol. Opt. Phys. 43, 165502 (2010)

    Article  ADS  Google Scholar 

  21. Shi, Z.C., Xia, Y., Song, J., Song, H.S.: One-step implementation of the Fredkin gate via quantum Zeno dynamics. Quantum Inf. Comput. 12, 215–230 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Zhang, S., Shao, X.Q., Chen, L., Zhao, Y.F., Yeon, K.H.: Robust gate on nitrogen-vacancy centres via quantum Zeno dynamics. J. Phys. B At. Mol. Opt. Phys. 44, 075505 (2011)

    Article  ADS  Google Scholar 

  23. Chen, Y.H., Xia, Y., Chen, Q.Q., et al.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)

    Article  ADS  Google Scholar 

  24. Zhou, Y.L., Wang, Y.M., Liang, L.M., Li, C.Z.: Quantum state transfer between distant nodes of a quantum network via adiabatic passage. Phys. Rev. A 79, 044304 (2009)

    Article  ADS  Google Scholar 

  25. Shi, Z.C., Xia, Y., Song, J., et al.: Atomic quantum state transferring and swapping via quantum Zeno dynamics[J]. JOSA B 28, 2909–2914 (2011)

    Article  ADS  Google Scholar 

  26. Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)

    Article  ADS  Google Scholar 

  27. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  28. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Article  Google Scholar 

  29. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  30. Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)

    Article  ADS  Google Scholar 

  31. Qiu, L., Tang, G., Yang, X., Wang, A.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350, 137–145 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Yao, C., Ma, Z.H., Chen, Z.H., et al.: Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal. Phys. Rev. A 86, 022312 (2012)

    Article  ADS  Google Scholar 

  33. Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  34. He, Z., Yao, C., Zou, J.: Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal. Phys. Rev. A 88, 044304 (2013)

    Article  ADS  Google Scholar 

  35. Man, Z.X., An, N.B., Xia, Y.J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349, 209–219 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  37. Sun, Q.Q., Al-Amri, M., Davidovich, L., et al.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  38. Li, Y.L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067–3077 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Xiao, X., Li, Y.L.: Protecting qutrit–qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  40. Katz, N., Neeley, M., Ansmann, M., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  41. Kim, Y.S., Cho, Y.W., Ra, Y.S., et al.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)

    Article  ADS  Google Scholar 

  42. Li, Y.L., Yao, Y., Xiao, X.: Robust quantum state transfer between two superconducting qubits via partial measurement. Laser Phys. Lett. 13, 125202 (2016)

    Article  ADS  Google Scholar 

  43. Sherman, J.A., Curtis, M.J., Szwer, D.J., et al.: Experimental recovery of a qubit from partial collapse. Phys. Rev. Lett. 111, 180501 (2013)

    Article  ADS  Google Scholar 

  44. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  45. Tan, S.M.: A computational toolbox for quantum and atomic optics. J. Opt. B Quantum Semiclass. Opt. 1, 424 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Funds of the National Natural Science Foundation of China under Grant Nos. 11665004 and 11365011, by the Natural Science Foundation of Jiangxi Province under Grant No. 20171BAB201019 and by the Scientific Research Foundation of Jiangxi Provincial Education Department under Grants Nos. GJJ150996 and GJJ150682. YL Li is also supported by the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YL., Huang, J., Xu, Z. et al. Enhancing the quantum state transfer between two atoms in separate cavities via weak measurement and its reversal. Quantum Inf Process 16, 258 (2017). https://doi.org/10.1007/s11128-017-1706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1706-8

Keywords

Navigation