Skip to main content
Log in

Ket–Bra entangled state method for solving master equation of finite-level system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we first introduce Ket–Bra entangled state method to solve master equation of finite-level system, which can convert master equation into Schrödinger-like equation and solve it with the mature methodology of Schrödinger equation. Then, several physical models include a radioactivity damped 2-level atom driven by classical field, a JC model with cavity damping, a V-type qutrit under amplitude damping and N-qubits open Heisenberg chain have been solved with KBES method. Furthermore, the dynamic evolution and decoherence process of these models are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. TFD investigate the dynamic evolution of open quantum system by introducing an extra mode which refers to the environment.

  2. For instance, \(e^{x_{-}\left( t\right) L_{-}}\rho =\sum \nolimits _{n=0}^{\infty }\frac{x_{-}^{n}\left( t\right) L_{-}^{n}}{n!}\rho =\sum \nolimits _{n=0}^{\infty }\frac{x_{-}^{n}\left( t\right) }{n!}\left( \sigma ^{-}\right) ^{n}\rho \left( \sigma ^{+}\right) ^{n}=\rho +\sigma ^{-}\rho \sigma ^{+}\).

  3. Mathematica is a symbolic mathematical computation program, used in many scientific, engineering, mathematical and computing fields. MatrixExp is the order to compute the exponent of matrix.

  4. The comparison may quite trivial because the expression of \(x_{\pm ,z}\left( t\right) \) is complicated; however, this process can be simplified by setting \(n=0\); besides, the comparison between c-number method in Ref. [23] and KBES method is quite simple.

  5. For instance, the Mathematica order MatrixExp[\(\mathscr {F}\)] can immediately obtain the expression of \(e^{\mathscr {F}}\) where \(\mathscr {F}\) is arbitrary-order matrix.

References

  1. Breuer, H.P.: The Theory of Open Quantum System. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  2. Carmichael, H.J.: Statistical Methods in Quantum Optics 1 Master Equation and Fokker–Planck Equation. Springer Press, New York (2002)

    Google Scholar 

  3. Savage, C.M., Walls, D.F.: Damping of quantum coherence: the master-equation approach. Phys. Rev. A 32, 2316 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. Myatt, C.J., King, B.E., et al.: Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269 (2000)

    Article  ADS  Google Scholar 

  5. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  6. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)

    Article  ADS  Google Scholar 

  7. Benatti, F., Floreanini, R. (eds.): Irreversible Quantum Dynamics. Lecture Notes in Physics, vol. 622, Springer Press, New York (2003)

  8. Wang, M.C., Uhienbeck, C.E.: On the theory of the Brownian motion II. Rev. Mod. Phys. 17, 323 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  9. Turchette, Q.A., Myatt, C.J.: Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs. Phys. Rev. A 62, 053807 (2000)

    Article  ADS  Google Scholar 

  10. Kiessich, G., Scholl, E.: Noise enhancement due to quantum coherence in coupled quantum dots. Phys. Rev. Lett. 99, 206602 (2007)

    Article  ADS  Google Scholar 

  11. Lax, M.: Quantum noise. X. Density-matrix treatment of field and population-difference fluctuations. Phys. Rev. 157, 213 (1967)

    Article  ADS  Google Scholar 

  12. Risken, H.: The Fokker–Planck equation. Springer Press, New York (1984)

    MATH  Google Scholar 

  13. Héctor, M.-C.: Decoherence in atom–field interactions: a treatment using superoperator techniques. Phys. Rep. 432(1), 1–41 (2006)

    Article  MathSciNet  Google Scholar 

  14. Aréalo-Aguilar, L.M., Moya-Cessa, H.: Solution to the master equation for a quantized cavity mode. Quantum Semiclass. Opt. 10, 671 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  15. Truax, D.R.: Baker–Campbell–Hausdorff relations and unitarity of SU(2) and SU (1,1) squeeze operators. Phys. Rev. D 31(9), 1988 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lu, H.X., Yang, J., Zhang, Y.D., et al.: Algebraic approch to master equations with superoperator generators of SU(1,1) and SU(2) Lie algebras. Phys. Rev. A 67, 024101 (2003)

    Article  ADS  Google Scholar 

  17. Verstraete, F., Porras, D., Cirac, J.I.: Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. Phys. Rev. Lett. 93, 227205 (2004)

    Article  ADS  Google Scholar 

  18. Celeghini, E., Rasetti, M., Vitiello, G.: Dissipation in quantum field theory. In: Nonlinear Coherent Structures in Physics and Biology, pp. 318–325. Springer Press, Berlin (1991)

  19. Fan, H.Y., Fan, Y.: New representation of thermal states in thermal field dynamics. Phys. Lett. A 246(3), 242–246 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Verstraete, F., Garcia-Ripoll, J.J., Cirac, J.I.: Matrix product density operators: simulation of finite-temperature and dissipative systems. Phys. Rev. Lett. 93, 207204 (2004)

    Article  ADS  Google Scholar 

  21. Perez-Garcia, D., Verstraete, F., Wolf, M.M., et al.: Matrix Product State Representations. arXiv:quant-ph/0608197v2 (2007)

  22. McCulloch, I.P.: From density-matrix renormalization group to matrix product states. J. Stat. Mech. 2007(10), P10014 (2007)

    Article  Google Scholar 

  23. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum System, XXX edn. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  24. Abdel-Khalek, S., Almalki, M.S.: Entanglement for jaynes cummings model in the presence multi-photon process under decoherence effect. Int. J. Quantum Inf. 3, 1350026 (2014)

    MATH  MathSciNet  Google Scholar 

  25. Abdel-Khalek, S., Nofal, T.A.: Correlation and entanglement of a three-level atom inside a dissipative cavity. Phys. A Stat. Mech. Appl. 390, 2626–2635 (2011)

    Article  Google Scholar 

  26. Abdel-Khalek, S., Obada, A.-S.F.: New features of Wehrl entropy and Wehrl PD of a single Cooper-pair box placed inside a dissipative cavity. Ann. Phys. 325, 2542–2549 (2010)

    Article  ADS  MATH  Google Scholar 

  27. Obada, A.-S.F., Abdel-Khalek, S., Shaheen, M.E.: Information dynamics for a non-degenerate two-photon JC model in phase damping cavity. Opt. Int. J. Light Electron Opt. 127, 3266–3270 (2016)

    Article  Google Scholar 

  28. Barnett, S.M., Knight, P.L.: Dissipation in a fundamental model of quantum optical resonance. Phys. Rev. A 33(4), 2444–2448 (1986)

    Article  ADS  Google Scholar 

  29. Derkacz, L., Jakóbczyk, L.: Quantum interference and evolution of entanglement in a system of three-level atoms. Phys. Rev. A 74, 032313 (2006)

    Article  ADS  Google Scholar 

  30. Ali, M.: Distillability sudden death in qutrit–qutrit systems under amplitude damping. J. Phys. B At. Mol. Opt. Phys. 43, 045504 (2010)

    Article  ADS  Google Scholar 

  31. Son, W., Amico, L., Plastina, F., et al.: Quantum instability and edge entanglement in the quasi-long-range order. Phys. Rev. A 79, 022302 (2009)

    Article  ADS  Google Scholar 

  32. Popkov, V., Salerno, M., Livi, R.: Full decoherence induced by local fields in open spin chains with strong boundary couplings. New J. Phys. 17, 023066 (2015)

    Article  ADS  Google Scholar 

  33. Jordan, P., Wigner, E.P.: About the Pauli exclusion principle. Z. Phys. 47, 631 (1928)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Chong Ren.

Additional information

Granted by National Natural Science Foundation of China (No. 11574295) and Natural Science Fund of Education Department of Anhui province (No. KJ2016A590).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, YC., Wang, S., Fan, HY. et al. Ket–Bra entangled state method for solving master equation of finite-level system. Quantum Inf Process 16, 270 (2017). https://doi.org/10.1007/s11128-017-1710-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1710-z

Keywords

Navigation