Abstract
We present a two-copy-based protocol for directly measuring the concurrence of two-photon polarization entangled mixed states (Collins–Gisin class state and the more complicated bipartite mixed entangled state—Werner class state) without quantum state tomography. The quantum circuit designed for directly measuring concurrence can be realized in an optical system. Our protocol works without the sophisticated controlled-NOT gate, which makes it much simpler than the previous ones. Because all the operations used here are local, the scheme can be used for directly measuring remote mixed entanglement too.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Deutsch, D.: Quantum computational networks. Proc. R. Soc. 425, 73 (1989)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Symposium on Foundations of Computer Science, IEEE Computer Society (1994)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bennett, C.H., Divincenzo, D.P.: Quantum information and computation. Nature (Lond.) 404, 247 (2000)
Schumacher, B., Westmoreland, M.D.: Sending classical information via a noisy quantum channel. Phys. Rev. A 56, 131 (1997)
Osenda, O., Serra, P.: Scaling of the von neumann entropy in a two-electron system near the ionization threshold. Phys. Rev. A 75, 042331 (2007)
Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Wootter, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)
Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)
Wootters, W.K.: Eanglement of formation and concurrence. Quantum Inf. Compt. 1, 27 (2001)
White, A.G., James, D.F.V., Eberhard, P.H., Kwiat, P.G.: Nonmaximally entangled states: production, characterization and utilization. Phys. Rev. Lett. 83, 3103 (1999)
James, D.F.V., Kwiat, P.G., Munro, W.J., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001)
Steffen, M., Ansmann, M., Bialczak, R.C., Katz, N., Lucero, E., McDermott, R., Neeley, M., Weig, E.M., Cleland, A.N., Martinis, J.M.: Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423 (2006)
Horodecki, P., Ekert, A.: Method for direct detection of quantum entanglement. Phys. Rev. Lett. 89, 127902 (2002)
Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)
Mintert, F., Buchleitner, A.: Observable entanglement measure for mixed quantum states. Phys. Rev. Lett. 98, 140505 (2007)
Cai, J.M., Song, W.: Novel schemes for directly measuring entanglement of general states. Phys. Rev. Lett. 101, 190503 (2008)
Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L., Mintert, F., Buchleitner, A.: Experimental determination of entanglement with a single measurement. Nature (Lond.) 440, 1022 (2006)
Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L., Mintert, F., Buchleitner, A.: Experimental determination of entanglement by a projective measurement. Phys. Rev. A 75, 032338 (2007)
Cheng, L.Y., Yang, G.H., Guo, Q., Wang, H.F., Zhang, S.: Direct measurement of nonlocal entanglement of two-qubit spin quantum states. Sci. Rep. 6, 19482 (2016)
Romero, G., López, C.E., Lastra, F., Solano, E., Retamal, J.C.: Direct measurement of concurrence for atomic two-qubit pure states. Phys. Rev. A 75, 032303 (2007)
Yang, R.C., Lin, X., Haung, Z.P., Li, H.C.: Simple scheme for directly measuring concurrence of two-qubit pure states in one step. Commun. Theor. Phys. 51, 252 (2009)
Bose, S., Knight, P.L., Plenio, M.B., Vedral, V.: Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158 (1999)
Zhang, L.H., Yang, M., Cao, Z.L.: Directly measuring the concurrence of atomic two-qubit states through the detection of cavity decay. Eur. Phys. J. D 68, 109 (2014)
Zhou, L., Sheng, Y.B.: Detection of nonlocal atomic entanglement assisted by single photons. Phys. Rev. A 90, 024301 (2014)
Zhou, L., Sheng, Y.B.: Concurrence measurement for the two-qubit optical and atomic states. Entropy 17, 4293 (2015)
Sheng, Y.B., Guo, R., Pan, J., Zhou, L., Wang, X.F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14, 963 (2015)
Bartkiewicz, K., Beran, J., Lemr, K., Norek, M., Miranowicz, A.: Quantifying entanglement of a two-qubit system via measurable and invariant moments of its partially transposed density matrix. Phys. Rev. A 91, 022323 (2015)
Bartkiewicz, K., Horodecki, P., Lemr, K., Miranowicz, A., Zyczkowski, K.: Method for universal detection of two-photon polarization entanglement. Phys. Rev. A 91, 032315 (2015)
Zhang, L.H., Yang, M., Cao, Z.L.: Direct measurement of the concurrence for two-photon polarization entangled pure states by parity-check measurements. Phys. Lett. A 377, 1421 (2013)
Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)
Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)
Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)
Munro, W.J., Nemoto, K., Spiller, T.P., Barrett, S.D., Kok, P., Beausoleil, R.G.: Efficient optical quantum information processing. J. Opt. B 7, S135 (2005)
Azuma, K., Takeda, H., Koashi, M., Imoto, N.: Quantum repeaters and computation by a single module: remote nondestructive parity measurement. Phys. Rev. A 85, 062309 (2012)
Zhang, L.H., Yang, Q., Yang, M., Song, W., Cao, Z.L.: Direct measurement of the concurrence of two-photon polarization-entangled states. Phys. Rev. A 88, 062342 (2013)
Wei, T.C., Altepeter, J.B., Branning, D., Goldbart, P.M., James, D.F.V., Jeffrey, E., Kwiat, P.G., Mukhopadhyay, S., Peter, N.A.: Synthesizing arbitrary two-photon polarization mixed states. Phys. Rev. A 71, 032329 (2005)
Collins, D., Gisin, N.: A relevant two qubit Bell inequality inequivalent to the CHSH inequality. J. Phys. A 37, 1775 (2004)
Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)
Hossenfelder, S.: Bimetric theory with exchange symmetry. Phys. Rev. D 78, 044015 (2008)
Chen, K., Albeverio, S., Fei, S.M.: Concurrence-based entanglement measure for Werner States. Rep. Math. Phys. 58, 325 (2006)
Gao, X.H., Sergio, A., Chen, K., Fei, S.M., Li-Jost, X.Q.: Entanglement of formation and concurrence for mixed states. Front. Comput. Sci. China 2, 114 (2008)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11274010, 11374085, 61370090).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Zeng, T., Chu, WJ., Yang, Q. et al. Scheme for directly measuring the concurrences of Collins–Gisin and Werner classes polarization entangled mixed states. Quantum Inf Process 16, 262 (2017). https://doi.org/10.1007/s11128-017-1713-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1713-9