Abstract
The nonlinear time-dependent two-photon Hamiltonian of a couple of classically pumped independent qubits is analytically solved, and the corresponding time evolution unitary operator, in an exact form, is derived. Using the concurrence, entanglement dynamics between the qubits under the influence of a wide range of effective parameters are examined and, in detail, analyzed. Observations analysis is documented with aid of the field phase-space distribution Wigner function. A couple of initial qubit states is considered, namely similar excited states and a Bell-like pure state. It is demonstrated that an initial Bell-like pure state is as well typical initial qubits setting for robust, regular and a high degree of entanglement. Moreover, it is established that high-constant Kerr media represent an effective tool for generating periodical entanglement at fixed time cycles of maxima reach unity forever when qubits are initially in a Bell-like pure state. Further, it is showed that the medium strength of the classical pumping stimulates efficiently qubits entanglement, specially, when the interaction occurs off resonantly. However, the high-intensity pumping thermalizes the coherent distribution of photons, thus, the least photons number is used and, hence, the least minimum degree of qubits entanglement could be created. Furthermore, when the cavity field and external pumping are detuned, the external pumping acts like an auxiliary effective frequency for the cavity, as a result, the field Gaussian distribution acquires linear chirps, and consequently, more entanglement revivals appear in the same cycle during timescale.




































Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Walls, D.F., Milburn, G.J.: Quantum Optics, 2nd edn. Springer, Berlin (2008)
Brukner, C., Zukowski, M., Zeilinger, A.: Quantum communication complexity protocol with two entangled qutrits. Phys. Rev. Lett. 89, 197901 (2002)
Adhikari, S., Majumdar, A.S., Roy, S., Ghosh, B., Nayak, N.: Teleportation via maximally and non-maximally entangled mixed states. Quant. Inf. Comput 10(5 & 6), 03980419 (2010)
Yupapin, P.P.: Generalized quantum key distribution via micro ring resonator for mobile telephone networks. Opt. Int. J. Light Electron Opt. 121(5), 422–425 (2010)
Waks, E., Zeevi, A., Yamamoto, Y.: Security of quantum key distribution with entangled photons against individual attacks. Phys. Rev. A 65, 52310 (2002)
Marzolino, U., Buchleitner, A.: Quantum teleportation with identical particles. Phys. Rev. A 91, 032316 (2015)
Albeverio, S., Fei, S.M., Yang, W.L.: Quantum teleportation: from pure to mixed states and standard to optimal. E-print: arXiv:quant-ph/0308009 (2003)
Roy, S., Ghosh, B.: A revisit to non-maximally entangled mixed states: teleportation witness, noisy channel and discord. Quant. Inf. Process. 16(4), 1–13 (2017)
Benenti, G., Casati, G., Strini, G.: Principle of Quantum Computation and Information. World Scientific, Singapore (2005)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Chao, D.S., Zhi, J.: Review on the study of entanglement in quantum computation speedup. Chin. Sci. Bull. 52(16), 21612166 (2007)
Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. In: Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, vol. 459, pp. 2011–2032 (2003)
Hacker, B., Welte, S., Rempe, G., Ritter, S.: A photonphoton quantum gate based on a single atom in an optical resonator. Nature 536, 193196 (2016)
Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001)
Chen, J., Altepeter, J.B., Medic, M., Lee, K.F., Gokden, B., Hadfield, R.H., Nam, S.W., Kumar, P.: Demonstration of a quantum controlled-NOT gate in the telecommunications band. Phys. Rev. Lett. 100, 133603 (2008)
O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. E-print: arXiv:quant-ph/0403062 (2004)
Giri, P.R., Korepin, V.E.: A review on quantum search algorithms. E-print: arXiv:1602.02730 [quant-ph] (2016)
Fushman, I., Englund, D., Faraon, A., Stoltz, N., Petroff, P., Vucković, J.: Controlled phase shifts with a single quantum dot. Science 320(5877), 769–772 (2008)
Das, A., Ronen, Y., Heiblum, M., Mahalu, D., Kretinin, A.V., Shtrikman, H.: High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation. Nat Commun (London) 3, 1165 (2012)
You, J.Q., Tsai, J.S., Nori, F.: Scalable quantum computing with Josephson charge qubits. Phys. Rev. Lett. 89, 197902 (2002)
You, J.Q., Tsai, J.S., Nori, F.: Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits. Phys. Rev. B 68, 024510 (2003)
Miranowicz, A., Paprzycka, M., Liu, Y-x, Bajer, J., Nori, F.: Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A 87, 023809 (2013)
You, J.Q., Hu, X., Nori, F.: Correlation-induced suppression of decoherence in capacitively coupled Cooper-pair boxes. Phys. Rev. B 72, 144529 (2005)
Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)
Buluta, Iulia, Nori, Franco: Quantum simulators. Science 326, 108–111 (2009)
Mabuchi, H., Doherty, A.C.: Cavity quantum electrodynamics: coherence in context. Science 298, 1372 (2002)
You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58(11), 42–47 (2005)
You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)
Xiang, Z.-L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)
Wang, Y.-C., Liu, J.-M.: entanglement swapping and concentration in the two-photon Jaynes–Cummings model. Int. J. Mod. Phys. B 21, 2805 (2007)
Li, P.B., Gu, Y., Gong, Q.H., Guo, G.C.: Quantum-information transfer in a coupled resonator waveguide. Phys. Rev. A 79, 042339 (2009)
Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)
Osnaghi, S., Bertet, P., Auffeves, A., Maioli, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902 (2001)
Hong, J., Lee, H.-W.: Quasideterministic generation of entangled atoms in a cavity. Phys. Rev. Lett. 89, 237901 (2002)
Yang, M., Yi, Y.-M., Cao, Z.-L.: scheme for preparation of W state via cavity QED. Int. J. Quantum. Inf. 2, 231 (2004)
Feng, X.-L., Zhang, Z.-M., Li, X.-D., Gong, S.-Q., Xu, Z.-Z.: Entangling distant atoms by interference of polarized photons. Phys. Rev. Lett. 90, 217902 (2003)
Duan, L.-M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)
Browne, D.E., Plenio, M.B., Huelga, S.F.: Robust creation of entanglement between ions in spatially separate cavities. Phys. Rev. Lett. 91, 067901 (2003)
Yang, C.-P., Chu, S.-I., Han, S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)
Marr, C., Beige, A., Rempe, G.: Entangled-state preparation via dissipation-assisted adiabatic passages. Phys. Rev. A 68, 033817 (2003)
Amniat-Talab, M., Guérin, S., Jauslin, H.R.: Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage. Phys. Rev. A 72, 012339 (2005)
Ashhab, S., Nori, F.: Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A 81, 042311 (2010)
Nation, P.D., Johansson, J.R., Blencowe, M.P., Nori, F.: Colloquium: stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1–24 (2012)
Liu, Yu-xi, Wei, L.F., Nori, Franco: Preparation of macroscopic quantum superposition states of a cavity field via coupling to a superconducting charge qubit. Phys. Rev. A 71, 063820 (2005)
Schneider, S., Milburn, G.J.: Entanglement in the steady state of a collective-angular-momentum (Dicke) model. Phys. Rev. A 65, 042107 (2002)
Kim, M.S., Lee, J., Ahn, D., Knight, P.L.: Entanglement induced by a single-mode heat environment. Phys. Rev. A 65, 040101(R) (2002)
Plenio, M.B., Huelga, S.F., Beige, A., Knight, P.L.: Cavity-loss-induced generation of entangled atoms. Phys. Rev. A 59, 2468 (1999)
Beige, A., Bose, S., Braun, D., Huelga, S.F., Knight, P.L., Plenio, M.B., Verdal, V.: Entangling atoms and ions in dissipative environments. J. Mod. Opt. 47, 2583 (2000)
Cabrillo, C., Cirac, J.I., Garcia-Fernandez, P., Zoller, P.: Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025 (1999)
Ficek, Z., Tanaś, R.: Entanglement induced by spontaneous emission in spatially extended two-atom systems. J. Mod. Opt. 50, 2765 (2003)
Tanaś, R., Ficek, Z.: Entangling two atoms via spontaneous emission. J. Opt. B 6, s90 (2004)
Tanas, R., Ficek, Z.: Entanglement of two atoms. Fortschr. Phys. 51, 230 (2003)
Flores-Hidalgo, G., Rojas, M., Rojas, O.: Entanglement of a two-atom system driven by the quantum vacuum in arbitrary cavity size. Phys. Lett. A 381(18), 1548 (2017)
Ma, J.-M., Jiao, Z.-Y., Li, N.: Quantum entanglement in two-photon Tavis–Cummings model with a Kerr nonlinearity. Int. J. Theor. Phys. 46, 2550 (2007)
Ateto, M.S.: Control of a nonlocal entanglement in the micromaser via two quanta non-linear processes induced by dynamic stark shift. Int. J. Theor. Phys. 48, 545 (2009)
Singh, S.P., Singh, N.: Nonlinear effects in optical fibers: origin, management and applications. Prog. Electromagn. Res. (PIER) 73, 249 (2007)
Lü, X.-Y., Zhang, W.-M., Ashhab, S., Ying, W., Nori, F.: Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Sci. Rep. 3, 2943 (2013)
Gong, Z.R., Ian, H., Liu, Yu-xi, Sun, C.P., Nori, Franco: Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system. Phys. Rev. A 80, 065801 (2009)
Aspelmeyer, M., Meystre, P., Schwab, K.: Quantum optomechanics. Phys. Today 65(7), 2935 (2012)
Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 11721176 (2008)
Marquardt, F., Girvin, S.M.: Trend: optomechanics. Physics 2, 40 (2009)
Li, C.: Nonlinear Optics: Principles and Applications. Springer. ISBN: 978-981-10-1487-1 (Print) 978-981-10-1488-8 (Online) (2017)
Mourou, A.G., Tajima, T., Bulanov, V.S.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 309 (2006)
Vaziri, M.R.R.: Comment on Nonlinear refraction measurements of materials using the moiré deflectometry. Opt. Commun. 357, 200 (2015)
Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego (2001)
Hamedi, H.R., Juzeliūnas, G.: Phase-sensitive Kerr nonlinearity for closed-loop quantum systems. Phys. Rev. A 91, 053823 (2015)
Dey, T.N., Agarwal, G.S.: Observable effects of Kerr nonlinearity on slow light. Phys. Rev. A 76, 015802 (2007)
Ali, H., Ziauddin, Ahmad, T.: The effect of Kerr nonlinearity and Doppler broadening on slow light propagation. Commun. Theor. Phys. 60, 87 (2012)
Würthner, F., Wortmann, R., Meerholz, K.: Chromophore design for photorefractive organic materials. Chem. Phys. Chem. 32, 17 (2002)
You, C.-Y., Shin, S.-C.: Generalized analytic formulae for magneto-optical Kerr effects. J. App. Phys. 84, 541 (1998)
Versteegh, M.A.M., Dijkhuis, J.I.: Ultrafast all-optical shutter based on two-photon absorption. Opt. Lett. 36(15), 2776–2778 (2011)
Hu, L.-Y., Duan, Z.-L., Xu, X.-X., Wang, Z.-S.: Wigner function evolution in self-Kerr Medium derived by entangled state representation. arXiv:1010.0584 [quant-ph] 25 Sep (2010)
Boumeester, D., Ekert, A., Zeilinger, A. (eds.): The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation. Quantum Computing. Springer, Berlin (2000)
Liu, Yu-xi, Wei, L.F., Nori, F.: Generation of nonclassical photon states using a superconducting qubit in a microcavity. Europhys. Lett. 67, 941–947 (2004)
Y-x, Liu, Xu, X.-W., Miranowicz, A., Nori, F.: From blockade to transparency: controllable photon transmission through a circuit-QED system. Phys. Rev. A 89, 043818 (2014)
Miranowicz, A., Paprzycka, M., Pathak, A., Nori, F.: Phase-space interference of states optically truncated by quantum scissors: generation of distinct superpositions of qudit coherent states by displacement of vacuum. Phys. Rev. A 89, 033812 (2014)
Miranowicz, A., Bartkowiak, M., Wang, X., Liu, Y-x, Nori, F.: Testing nonclassicality in multimode fields: a unified derivation of classical inequalities. Phys. Rev. A 82, 013824 (2010)
Bartkowiak, M., Miranowicz, A., Wang, X., Liu, Y-x, Leoński, W., Nori, F.: Sudden vanishing and reappearance of nonclassical effects: general occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses. Phys. Rev. A 83, 053814 (2011)
Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH, Berlin (2001)
Stobińska, M., Milburn, G.J., Wódkiewicz, K.: Wigner function evolution of quantum states in the presence of self-Kerr interaction. Phys. Rev. A 78, 013810 (2008)
Bertet, P., Auffeves, A., Maioli, P., Osnaghi, S., Meunier, T., Brune, M., Raimond, J.M., Haroche, S.: Direct measurement of the Wigner function of a one-photon fock state in a cavity. Phys. Rev. Lett. 89(20), 200402 (2002)
Kenfack, A., Życkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B: Quantum Semiclassical Opt. 6, 396 (2004)
Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, P.: Increasing entanglement between gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007)
Neergaard-Nielsen, J.S., Melholt Nielsen, B., Hettich, C., Molmer, K., Polzik, E.S.: Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006)
Jeong, H., Lund, A.P., Ralph, T.C.: Production of superpositions of coherent states in traveling optical fields with inefficient photon detection. Phys. Rev. A 72, 013801 (2005)
Veitch, V., Ferrie, C., Gross, D., Emerson, J.: Negative quasi-probability as a resource for quantum computation. New J. Phys. 14, 113011 (2012)
Mari, A., Eisert, J.: Positive Wigner functions render classical simulation of quantum computation efficient. Phys. Rev. Lett. 109, 230503 (2012)
Veitch, V., Wiebe, N., Ferrie, C., Emerson, J.: Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation. New J. Phys. 15, 013037 (2013)
Hardy, Y., Steeb, W.-H., Stoop, R.: Entanglement, disentanglement and Wigner functions. Phys. Scr. 69, 166 (2004)
Dahl, J.P., Mack, H., Wolf, A., Schleich, W.P.: Entanglement versus negative domains of Wigner functions. Phys. Rev. A 74, 042323 (2006)
Li-Yun, H., Hong-Yi, F.: Entanglement involved in pair coherent state studied via Wigner function formalism. Commun. Theor. Phys. (Beijing, China) 52, 1071 (2009)
Mišta Jr., L., Filip, R., Furusawa, A.: Continuous-variable teleportation of a negative Wigner function. Phys. Rev. A 82, 012322 (2010)
Santos, M.F., Lutterbach, L.G., Davidovich, L.: Probing entanglement in phase space: signature of GHZ states in the Wigner function. J. Opt. B Quantum Semiclassical Opt. 3, S55 (2001)
Fan, H.-Y., Jiang, N.-Q.: Tripartite entangled Wigner operator, the Wigner function and its marginal distributions. J. Opt. B Quantum Semiclassical Opt. 5, 283 (2003)
Ateto, M.S.: Atom-atom entanglement dynamics enhancement via classically driven atoms coupled to a non-resonance single mode cavity field filled with nonlinear Kerr media. Int. J. Quant. Inf. 13(5), 1550034 (2015)
Solano, E., Agarwal, G.S., Walther, H.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003)
Akhtarshenas, S.J., Khezrian, M.: Entanglement dynamics and decoherence of an atom coupled to a dissipative cavity field. Eur. Phys. J. D 57, 271 (2010)
Burlak, G., Starostenko, O., Hernandez, J.A.: The dynamics of coupled atom and field assisted by continuous external pumping. Rev. Mex. Fis. 52(3), 213 (2006)
Zheng, S.-B.: Jaynes–Cummings model with a collective atomic mode. Phys. Rev. A 77, 045802 (2008)
Escudero-Jiménez, J.L., Juárez-Amaro, R., Mar-Sarao, R., Moya-Cessa, H.: Effective Hamiltonian for a two-level atom interacting with two fields. I. R. E. Phys. 2, 281 (2008)
Klimov, A.B., Sainz, I., Saavedra, C.: Effective resonant interactions via a driving field. J. Opt. B Quantum Semiclassical Opt. 6, 448 (2004)
Moya-Cessa, H.: Decoherence in atomfield interactions: a treatment using superoperator techniques. Phys. Rep. 432, 1 (2006)
Ateto, M.S.: Optimizing of maximally-entangled state by means of nonlinearity. Int. J. Quant. Inf. 5(4), 535 (2007)
Ateto, M.S.: An investigation of a nonlocal entanglement of two uncoupled atoms embedded in a coherent cavity field and the associated phase space distribution: one quantum nonlinear process. Int. J. Quant. Inf. 8(6), 1045 (2010)
Alsing, P., Zubairy, M.S.: Collapse and revivals in a two-photon absorption process. J. Opt. Soc. Am. B 4, 177 (1987)
Puri, R.R., Bullough, R.K.: Quantum electrodynamics of an atom making two-photon transitions in an ideal cavity. J. Opt. Soc. Am. B 5, 2021 (1988)
Joshi, A., Puri, R.R.: Quantum electrodynamics of a rydberg atom making two-photon transitions in the binomial state of the field in a lossless cavity. J. Mod. Opt. 36, 215 (1989)
Gantsog, Ts, Joshi, A., Tanaś, R.: Phase properties of one- and two-photon Jaynes–Cummings models with a Kerr medium. Quantum Semiclassical Opt. 8, 445 (1996)
Demkowicz-Dobrzański, R., Jarzyna, M., Kolodyński, J.: Quantum limits in optical interferometry. arXiv:1405.7703v2 [quant-ph] 8 Oct (2014)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Hudson, R.L.: When is the Wigner quasi-probability density non-negative? Rep. Math. Phys. 6, 249 (1974)
Verma, A., Manchanda, P., Varshney, A.D., Chauhan, P.K.: Phase space distribution functions for qudit states using QUTIP. Int. J. Res. Eng. Tech. Manag. 3(3), 1 (2015). ID: IJRETM-2015-03-03-009
de León-Montiel, R.J., Moya-Cessa, H.M., Soto-Eguibar, F.: Nonlinear coherent states for the Susskind–Glogower operators. Rev. Mex. Fis. 57(3), 133 (2011)
de León-Montiel, R.J., Moya-Cessa, H.M.: Generation of squeezed Schrdinger cats in a tunable cavity filled with a Kerr medium. J. Opt. 17(6), 065202 (2015)
Tuguldur, B., Gantsog, T.S.: Some features of the Driven Jaynes–Cummings system. arXiv:1212.3211 [quant-ph] 13 Dec (2012)
Wilson-Gordon, A.D., Buzek, V., Knight, P.L.: Statistical and phase properties of displaced Kerr states. Phys. Rev. 44(11), 7647 (1991)
Miranowicz, A., Bartkiewicz, K., Pathak, A., Peirina Jr., J., Chen, Y.-N., Nori, F.: Statistical mixtures of states can be more quantum than their superpositions: comparison of nonclassicality measures for single-qubit states. Phys. Rev. A 91, 042309 (2015)
Boyd, R.W.: Nonlinear Optics. Academic, San Diego (1992)
Paris, M.G.A.: Generation of mesoscopic quantum superpositions through Kerr-stimulated degenerate downconversion. J. Opt. B Quantum Semiclassical Opt. 1, 662 (1999)
Anderson, D., Desaix, M., Lisak, M., Quiroga-Teixeiro, M.L.: Wave breaking in nonlinear-optical fibers. J. Opt. Soc. Am. B. 9(8), 1358 (1992)
Gevorgyan, T.V., Shahinyan, A.R., Kryuchkyan, G.Y.: Quantum interference and sub-Poissonian statistics for time-modulated driven dissipative nonlinear oscillators. Phys. Rev. A 79, 053828 (2009)
Stobińska, M., Villar, A.S., Leuchs, G.: Generation of Kerr non-Gaussian motional states of trapped ions. EPL 94, 54002 (2011). doi:10.1209/0295-5075/94/54002
Yukawa, M., Miyata, K., Mizuta, T., Yonezawa, H., Marek, P., Filip, R., Furusawa, A.: Generating superposition of up-to three photons for continuous variable quantum information processing. Opt. Express 21, 5529 (2013)
L’Huillier, A., Piraux, B., Rzazewski, K.: Super-Intense Laser-Atom Physics. Springer. ISBN 978-1-4615-7963-2
Zuppardo, M., Santos, J.P., De Chiara, G., Paternostro, M., Semião, F.L., Palma, G.M.: Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction. Phys. Rev. A 91, 033631 (2015)
Eggleton, B.J., Lenz, G., Slusher, R.E., Litchinitser, N.M.: Compression of optical pulses spectrally broadened by self-phase modulation with a fiber Bragg grating in transmission. App. Opt. 37(30), 7055 (1998)
Liu, B., Yamilov, A., Caoa, H.: Effect of Kerr nonlinearity on defect lasing modes in weakly disordered photonic crystals. Appl. Phys. Lett. 83(6), 1092 (2003)
Acknowledgements
The author would like to express his great thanks to the reviewer for precious comments and remarks which have contributed effectively in improving the manuscript in many ways. Also, the author is grateful to the Editor for helpful advice.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ateto, M.S. Qubit–qubit entanglement dynamics control via external classical pumping and Kerr nonlinearity mediated by a single detuned cavity field powered by two-photon processes. Quantum Inf Process 16, 267 (2017). https://doi.org/10.1007/s11128-017-1714-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1714-8