Abstract
Quantum coherence plays a central role in quantum mechanics and provides essential power for quantum information processing. In this paper, we study the dynamics of the \(l_1\) norm coherence in one-dimensional quantum walk on cycles for two initial states. For the first initial state, the walker starts from a single position. The coherence increases with the number of steps at the beginning and then fluctuates over time after approaching to saturation. The coherence with odd number of sites is much larger than that with even number of sites. Another initial state, i.e., the equally superposition state, is also considered. The coherence of the whole system is proved to be \(N-1\) (\(2N-1\)) for any odd (even) time step where N is the number of sites. We also investigate the influence of two unitary noises, i.e., noisy Hadamard operator and broken link, on the coherence evolution.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
By curve fitting, we have \(C(|{\varPsi }(t)\rangle )=1.527 t^{0.9405}\) and \(C(Tr_C(|{\varPsi }(t)\rangle ))=0.5818 t^{0.9626}\).
References
Barber, M.N., Ninham, B.W.: Random and Restricted Walks: Theory and Applications. CRC Press, Boca Raton (1970)
Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)
Kendon, V., Tregenna, B.: Decoherence can be useful in quantum walks. Phys. Rev. A 67, 042315 (2003)
Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 50–59. ACM (2001)
Maloyer, O., Kendon, V.: Decoherence versus entanglement in coined quantum walks. New J. Phys. 9, 87 (2007)
Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)
Du, Y.M., Lu, L.H., Li, Y.Q.: Switching effect of the side chain on quantum walks on triple graphs. Phys. Rev. A 92, 012309 (2015)
Oliveira, A., Portugal, R., Donangelo, R.: Decoherence in two-dimensional quantum walks. Phys. Rev. A 74, 012312 (2006)
Shapira, D., Biham, O., Bracken, A., Hackett, M.: One-dimensional quantum walk with unitary noise. Phys. Rev. A 68, 062315 (2003)
Rodriguez, J.P., Li, Z.J., Wang, J.B.: Discord and entanglement of two-particle quantum walk on cycle graphs. Quantum Inf. Process. 14, 119 (2015)
Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-particle Bosonic–Fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)
Xue, P., Zhang, R., Bian, Z.H., Zhan, X., Qin, H., Sanders, B.C.: Localized state in a two-dimensional quantum walk on a disordered lattice. Phys. Rev. A 92, 042316 (2015)
Xu, Y.Z., Guo, G.D., Lin, S.: One-dimensional three-state quantum walk with single-point phase defects. Int. J. Theor. Phys. 55, 4060 (2016)
Romanelli, A., Siri, R., Abal, G., Auyuanet, A., Donangelo, R.: Decoherence in the quantum walk on the line. Physica A 347, 137 (2005)
Zhang, Y.C., Bao, W.S., Wang, X., Fu, X.Q.: Decoherence in optimized quantum random-walk search algorithm. Chin. Phys. B 24, 080307 (2015)
Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)
Potocek, V., Gabris, A., Kiss, T., Jex, I.: Optimized quantum random-walk search algorithms on the hypercube. Phys. Rev. A 79, 012325 (2009)
Xue, X.L., Chen, H.W., Liu, Z.H., Zhang, B.B.: Search algorithm of structure anomalies in complete graph based on scattering quantum walk. Acta Phys. Sin. 65, 080302 (2016)
Xue, X.L., Chen, H.W., Liu, Z.H.: Finding structural anomalies in complete graphs using scattering quantum walks. Int. J. Quantum Inf. 14, 1650035 (2016)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)
Yao, Y., Dong, G.H., Xiao, X., Sun, C.P.: Frobenius-norm-based measures of quantum coherence and asymmetry. Sci. Rep. 6, 32010 (2016)
Wang, J.C., Tian, Z.H., Jing, J.L., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. Phys. Rev. A 93, 062105 (2016)
Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102 (2016)
Hu, X.Y.: Coherence non-generating channels. Phys. Rev. A 94, 012326 (2016)
Chen, M.M., Luo, Y., Shao, L.H., Li, Y.M.: Dynamics of Cohering and Decohering Power Under Markovian Channels. arXiv: 1612.05355 (2016)
Hu, M.L., Fan, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)
Situ, H.Z., Hu, X.Y.: Dynamics of relative entropy of coherence under Markovian channels. Quantum Inf. Process. 15, 4649 (2016)
Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484–492 (2017)
Huang, Z.M., Situ, H.Z.: Optimal protection of quantum coherence in noisy environment. Int. J. Theor. Phys. 56, 503 (2017)
Huang, Z.M., Situ, H.Z., Zhang, C.: Quantum coherence and correlation in spin models with Dzyaloshinskii–Moriya interaction. Int. J. Theor. Phys. 56, 2178 (2017)
Huang, Z.M., Rong, Z.B., Zou, X.F., Situ, H.Z., Zhao, L.H.: Protecting qutrit quantum coherence. Int. J. Theor. Phys. 56, 2540 (2017)
Huang, Z.M., Situ, H.Z.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)
Hillery, M.: Coherence as a resource in decision problems: the Deutsch–Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)
Ma, J.J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)
Matera, J.M., Egloff, D., Killoran, N., Plenio, M.B.: Coherent control of quantum systems as a resource theory. Quantum Sci. Technol. 1, 01LT01 (2016)
Kendon, V.: Decoherence in quantum walks—a review. Math. Struct. Comput. Sci. 17, 1169 (2007)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Nos. 61502179, 61472452, 11647140, 61772565), the Natural Science Foundation of Guangdong Province of China (Nos. 2014A030310265, 2014A030313157, 2017A030313378), the Science and Technology Program of Guangzhou City of China (No. 201707010194), the Fundamental Research Funds for the Central Universities (No. 17lgzd29), the Research Foundation for Talented Scholars of Foshan University (No. gg040996), the Science Foundation for Young Teachers of Wuyi University (No. 2015zk01) and the Doctoral Research Foundation of Wuyi University (No. 2017BS07). H.Z. Situ is sponsored by the State Scholarship Fund of the China Scholarship Council.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
He, Z., Huang, Z., Li, L. et al. Coherence of one-dimensional quantum walk on cycles. Quantum Inf Process 16, 271 (2017). https://doi.org/10.1007/s11128-017-1724-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1724-6