Skip to main content
Log in

Two-way QKD with single-photon-added coherent states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work we present a two-way quantum key distribution (QKD) scheme that uses single-photon-added coherent states and displacement operations. The first party randomly sends coherent states (CS) or single-photon-added coherent states (SPACS) to the second party. The latter sends back the same state it received. Both parties decide which kind of states they are receiving by detecting or not a photon on the received signal after displacement operations. The first party must determine whether its sent and received states are equal; otherwise, the case must be discarded. We are going to show that an eavesdropper provided with a beam splitter gets the same information in any of the non-discarded cases. The key can be obtained by assigning 0 to CS and 1 to SPACS in the non-discarded cases. This protocol guarantees keys’ security in the presence of a beam splitter attack even for states with a high number of photons in the sent signal. It also works in a lossy quantum channel, becoming a good bet for improving long-distance QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Weaker than 0.2 photons per pulse in many practical implementations.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In Proceedings of IEEE International Conference on Computer Systems and Signal Processing, Bangalore, India, 10–12 Dec 1984

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  4. Muralidharan, S., Li, L., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016)

    Article  ADS  Google Scholar 

  5. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  6. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003)

    Article  ADS  Google Scholar 

  7. Gottesman, D., Preskill, J.: Secure quantum key distribution using squeezed states. Phys. Rev. A 63, 022309 (2001)

    Article  ADS  Google Scholar 

  8. Korzh, B., Lim, C.C.W., Houlmann, R., Gisin, N., Li, M.J., Nolan, D., Sanguinetti, B., Thew, R., Zbinden, H.: Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photonics 9, 163–168 (2015)

    Article  ADS  Google Scholar 

  9. Hwang, W.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  10. Lo, H., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  11. Kim, M., Bellini, M.: The quantum mechanics of photon addition and subtraction. SPIE Newsroom. https://doi.org/10.1117/2.1200811.1369 (2008)

  12. Sivakumar, S.: Photon-added coherent states as nonlinear coherent states. J. Phys. A Math. Gen. 32, 3441 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kim, M.: Recent developments in photon-level operations on travelling light fields. J. Phys. B At. Mol. Opt. Phys. 41, 133001 (2008)

    Article  ADS  Google Scholar 

  14. Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660–662 (2004)

    Article  ADS  Google Scholar 

  15. Zavatta, A., Viciani, S., Bellini, M.: Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission. Phys. Rev. A 72, 023820 (2005)

    Article  ADS  Google Scholar 

  16. Paris, M.G.: Displacement operator by beam splitter. Phys. Lett. A 217, 78–80 (1996)

    Article  ADS  Google Scholar 

  17. Fedorov, K.G., Zhong, L., Pogorzalek, S., Eder, P., Fischer, M., Goetz, J., Xie, E., Wulschner, F., Inomata, K., Yamamoto, T., Nakamura, Y., Di Candia, R., Las Heras, U., Sanz, M., Solano, E., Menzel, E.P., Deppe, F., Marx, A., Gross, R.: Displacement of propagating squeezed microwave states. Phys. Rev. Lett. 117, 020502 (2016)

    Article  ADS  Google Scholar 

  18. Lvovsky, A.I., Babichev, S.A.: Synthesis and tomographic characterization of the displaced Fock state of light. Phys. Rev. A 66, 011801 (2002)

    Article  ADS  Google Scholar 

  19. Campos, R.A., Saleh, B.E.A., Teich, M.C.: Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. Phys. Rev. A 40, 1371–1384 (1989)

    Article  ADS  Google Scholar 

  20. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gardiner, C., Zoller, P.: Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, vol. 56. Springer, Berlin (2004)

    MATH  Google Scholar 

  22. yi Fan, H., yun Hu, L.: Infinite-dimensional Kraus operators for describing amplitude-damping channel and laser process. Opt. Commun. 282, 932–935 (2009)

    Article  ADS  Google Scholar 

  23. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991)

    Article  ADS  Google Scholar 

  24. Dodonov, V.V., Marchiolli, M.A., Korennoy, Y.A., Man’ko, V.I., Moukhin, Y.A.: Dynamical squeezing of photon-added coherent states. Phys. Rev. A 58, 4087–4094 (1998)

    Article  ADS  Google Scholar 

  25. Chefles, A.: Quantum state discrimination. Contemp. Phys. 41, 401–424 (2000)

    Article  ADS  MATH  Google Scholar 

  26. Shi, G., Xi, X., Hu, M., Yue, R.: Quantum secure dialogue by using single photons. Opt. Commun. 283, 1984–1986 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Mundarain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, M., Mundarain, D. Two-way QKD with single-photon-added coherent states. Quantum Inf Process 16, 298 (2017). https://doi.org/10.1007/s11128-017-1752-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1752-2

Keywords

Navigation