Skip to main content
Log in

Enhancing parameter estimation precision by non-Hermitian operator process

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, Zhong et al. (Phys Rev A 87:022337, 2013) investigated the dynamics of quantum Fisher information (QFI) in the presence of decoherence. We here reform their results and propose two schemes to enhance and preserve the QFIs for a qubit system subjected to a decoherence noisy environment by applying \({non\text {-}Hermitian}\) operator process either before or after the amplitude damping noise. Resorting to the Bloch sphere representation, we derive the exact analytical expressions of the QFIs with respect to the amplitude parameter \(\theta \) and the phase parameter \(\phi \), and in detail investigate the influence of \({non\text {-}Hermitian}\) operator parameters on the QFIs. Compared with pure decoherence process (without non-Hermitian operator process), we find that the \({post non\text {-}Hermitian}\) operator process can potentially enhance and preserve the QFIs by choosing appropriate \({non\text {-}Hermitian}\) operator parameters, while with the help of the \({prior non\text {-}Hermitian}\) operator process one could completely eliminate the effect of decoherence to improve the parameters estimation. Finally, a generalized non-Hermitian operator parameters effect on the parameters estimation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  2. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. NorthHolland, Amsterdam (1982)

    MATH  Google Scholar 

  4. Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. 49, 910 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Fisher, R.A.: Theory of statistical estimation. Math. Proc. Camb. Philos. Soc. 22, 700 (1925)

    Article  ADS  MATH  Google Scholar 

  6. Luo, S.L.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  7. Liu, J., Jing, X.X., Wang, X.G.: Phase-matching condition for enhancement of phase sensitivity in quantum metrologyPhys. Rev. A 88, 042316 (2013)

    Article  Google Scholar 

  8. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  9. Boixo, S., Datta, A., Flammia, S.T., Shaji, A., Bagan, E., Caves, C.M.: Quantum-limited metrology with product states. Phys. Rev. A 77, 012317 (2008)

    Article  ADS  Google Scholar 

  10. Napolitano, M., Mitchell, M.W.: Nonlinear metrology with a quantum interface. New J. Phys. 12, 093016 (2010)

    Article  ADS  Google Scholar 

  11. Sun, F.W., Liu, B.H., Gong, Y.X., Huang, Y.F., Ou, Z.Y., Guo, G.C.: Experimental demonstration of phase measurement precision beating standard quantum limit by projection measurement. Europhys. Lett. 82, 24001 (2008)

    Article  ADS  Google Scholar 

  12. Alipour, S., Mehboudi, M., Rezakhani, A.T.: Quantum metrology in open systems: a dissipative Cramer-Rao bound. Phys. Rev. Lett. 112, 120405 (2014)

    Article  ADS  Google Scholar 

  13. Ali Altintas, A.: Quantum Fisher information of an open and noisy system in the steady state. Ann. Phys. 367, 192 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ozaydin, F.: Phase damping destroys quantum Fisher Information of W states. Phys. Lett. A 378, 3161 (2014)

    Article  ADS  MATH  Google Scholar 

  15. Tan, Q.S., Huang, Y.X., Kuang, L.M., Wang, X.G.: Dephasing-assisted parameter estimation in the presence of dynamical decoupling. Phys. Rev. A 89, 063604 (2014)

    Article  ADS  Google Scholar 

  16. Tan, Q.S., Huang, Y.X., Yin, X.L., Kuang, L.M., Wang, X.G.: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses. Phys. Rev. A 87, 032102 (2013)

    Article  ADS  Google Scholar 

  17. Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Quantum Fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88, 043832 (2013)

    Article  ADS  Google Scholar 

  18. Li, Y.L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-state system. Phys. Rev. A 91, 052105 (2015)

    Article  ADS  Google Scholar 

  19. Abdel-Khalek, S.: Fisher information due to a phase noisy laser under non-Markovian environment. Ann. Phys. 351, 952–959 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Berrada, K.: Non-Markovian effect on the precision of parameter estimation. Phys. Rev. A 88, 035806 (2013)

    Article  ADS  Google Scholar 

  21. Berrada, K.: Protecting the precision of estimation in a photonic crystal. J. Opt. Soc. Am. B 32, 571 (2015)

    Article  ADS  Google Scholar 

  22. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.J.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)

    Article  ADS  Google Scholar 

  23. He, Z., Yao, C.M.: Enhancing the precision of phase estimation by weak measurement and quantum measurement reversal. Chin. Phys. B 23, 110601 (2014)

    Article  ADS  Google Scholar 

  24. Ozaydin, F., Ali Altintas, A.: Quantum metrology: Surpassing the shot-noise limit with Dzyaloshinskii–Moriya interaction. Scient. Rep. 5, 16360 (2015)

    Article  ADS  Google Scholar 

  25. Zhong, W., Sun, Z., Ma, J., Wang, X.G., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

  26. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Zhen, C., Hao, L., Long, G.L.: Observation of a fast evolution in a parity-time-symmetric system. Philos. Trans. R. Soc. A 371, 20120053 (2013)

  28. Olaya-Castro, A., Lee, C.F., Olsen, F.F., Johnson, N.F.: Efficiency of energy transfer in a light-harvesting system under quantum coherence. Phys. Rev. B 78, 085115 (2008)

    Article  ADS  Google Scholar 

  29. Ai, Q., Fan, Y.J., Jin, B.Y., Cheng, Y.C.: An efficient quantum jump method for coherent energy transfer dynamics in photosynthetic systems under the influence of laser fields. New J. Phys. 16, 053033 (2014)

    Article  ADS  Google Scholar 

  30. Chen, S.L., Chen, G.Y., Chen, Y.N.: Increase of entanglement by local PT-symmetric operations. Phys. Rev. A 90, 054301 (2014)

    Article  ADS  Google Scholar 

  31. Lu, X.M., Wang, X.G., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  32. Liu, Z.P., Zhang, J., özdemir, S.K., Peng, B., Jing, H., Lü, X.Y., Li, C.W., Yang, L., Nori, F., Liu, Y.X.: Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett. 117, 110802 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Funds of the National Natural Science Foundation of China under (Grant No. 11374096), the Natural Science Foundation of Hunan Province (Grant Nos. 2017JJ3346 and 2016JJ2045), the Start-up Funds for Talent Introduction and Scientific Research of Changsha University 2015 (SF1504), Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education (QSQC1403) and Scientific Research Project of Hunan Province Department of Education (16C0134 and 16C0469)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mao-fa Fang or Ke Zeng.

Appendix A

Appendix A

In this appendix, we give the explicit analytical expressions of the QFIs. First we calculate the nonzero elements of \({\tilde{\rho }}_{I}(t)\)

$$\begin{aligned} r_{x}= & {} \frac{2\Delta \cos ^2\alpha \cos \phi \sin \theta }{2+\Gamma \sin 2\tau \sin 2\alpha -2\sin \alpha (\cos 2\tau \sin \alpha +2\Delta \sin ^2\tau \sin \theta \sin \phi )}, \end{aligned}$$
(A1)
$$\begin{aligned} r_{y}= & {} \frac{\sin ^2\tau (2\Delta \sin \theta \sin \phi -4\sin \alpha )+\Delta \sin \theta \sin \phi (1-2\cos ^2\tau +\sin ^2\alpha )-2\Gamma \cos \alpha \sin 2\tau -\Delta \cos ^2\alpha \sin \theta \sin \phi }{2+\Gamma \sin 2\tau \sin 2\alpha -2\sin \alpha (\cos 2\tau \sin \alpha +2\Delta \sin ^2\tau \sin \theta \sin \phi )},\nonumber \\ \end{aligned}$$
(A2)
$$\begin{aligned} r_{z}= & {} \frac{2\Gamma \cos 2\tau \cos ^2\alpha +\sin 2\tau (\sin 2\alpha -2\Delta \cos \alpha \sin \theta \sin \phi )}{2+\Gamma \sin 2\tau \sin 2\alpha -2\sin \alpha (\cos 2\tau \sin \alpha +2\Delta \sin ^2\tau \sin \theta \sin \phi )}, \end{aligned}$$
(A3)

\(\Gamma \equiv 1+\Delta ^2(\cos \theta -1)\). Substituting above questions into Eq. (3), the analytical expressions of the QFIs of \({\tilde{\rho }}_{I}(t)\) with respect to \(\theta \) and \(\phi \)

$$\begin{aligned} {\mathcal {F}}_{\theta }^{}= & {} \frac{4\cos ^2\alpha }{N}\nonumber \\&\left\{ \Delta ^2\cos ^2\alpha \cos ^2\phi [\cos \theta (2-2\cos 2\tau \sin ^2\alpha )\right. \nonumber \\&+(\Delta ^2+\eta ^2\cos \theta )\sin 2\tau \sin 2\alpha ]^2+4\cos ^4 \alpha [\Delta \cos 2\tau \cos \alpha \cos \theta \sin \phi \nonumber \\&+\Delta \sin 2\tau (\Delta ^2\sin \alpha \sin \phi +\eta ^2\cos \theta \sin \alpha \nonumber \\&\sin \phi -\Delta \sin \theta )]^2+4\eta ^2\Delta ^2\cos ^2\alpha \sin ^2 \frac{\theta }{2}\nonumber \\&\times \left[ (2-\cos 2\tau +\cos 2(\tau -\alpha ))\cos \frac{\theta }{2}-4\Delta \sin ^2\tau \sin \alpha \sin \phi \sin \frac{\theta }{2}\right] ^2\nonumber \\&+\left[ \Delta \sin \phi \sin 2\alpha (\cos ^2\tau +\eta ^2\cos ^2\tau \cos \theta +\eta ^2+\eta ^2\sin ^2\tau )\right. \nonumber \\&-2\Delta \sin \phi \sin 2\tau \cos ^2\alpha \cos \theta \nonumber \\&+\left. \Delta ^2\cos \alpha (1-2\cos 2\tau -\cos 2\alpha )\sin \theta \right. \nonumber \\&\left. +\left. \Delta \sin 2\alpha \sin \phi (\Delta ^2\cos ^2\tau -\eta ^2\cos \theta (\sin ^2\tau +1)-2)\right] ^2\right\} , \end{aligned}$$
(A4)
$$\begin{aligned} {\mathcal {F}}_{\phi }^{}= & {} \frac{4\cos ^4\alpha }{N}\left\{ 256\eta ^2\Delta ^2\cos ^2\frac{\theta }{2}\cos ^2\phi \sin ^4\tau \sin ^2\alpha \sin ^6\frac{\theta }{2}\right. \nonumber \\&+16\Delta ^2\cos ^2\phi \sin ^2\tau \sin ^2\theta (\cos \tau \cos \alpha +\Gamma \sin \tau \sin \alpha )^2\nonumber \\&+4\Delta ^2\cos ^2\alpha \cos ^2\phi \sin ^2\theta (\cos 2\tau \cos \alpha +\Gamma \sin 2\tau \sin \alpha )^2\nonumber \\&+\sin ^2\theta [\Delta (2-2\cos 2\tau \sin ^2\alpha +\Gamma \sin 2\tau \sin 2\alpha \sin \phi )\nonumber \\&-\left. 4\Delta ^2\sin ^2\tau \sin \alpha \sin \theta ]^2\right\} , \end{aligned}$$
(A5)

where \( N=[2-2\sin \alpha (2\Delta \sin ^2\tau \sin \theta \sin \phi +\cos 2\tau \sin \alpha )+\Gamma \sin 2\tau \sin 2\alpha ]^4 \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Yn., Fang, Mf., Wang, Gy. et al. Enhancing parameter estimation precision by non-Hermitian operator process. Quantum Inf Process 16, 301 (2017). https://doi.org/10.1007/s11128-017-1756-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1756-y

Keywords

Navigation