Skip to main content
Log in

Quantifying matrix product state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Motivated by the concept of quantum finite-state machines, we have investigated their relation with matrix product state of quantum spin systems. Matrix product states play a crucial role in the context of quantum information processing and are considered as a valuable asset for quantum information and communication purpose. It is an effective way to represent states of entangled systems. In this paper, we have designed quantum finite-state machines of one-dimensional matrix product state representations for quantum spin systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TN:

Tensor network

TNS:

Tensor network state

MPS:

Matrix product state

PEPS:

Projected entangled pair state

TTN:

Tree tensor network

MERA:

Multiscale entanglement renormalization ansatz

FSM:

Finite-state machine

SFSM:

Stochastic finite-state machine

QFSM:

Quantum finite-state machine

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Orús, R.: A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48(14), 10345 (1993)

    Article  ADS  Google Scholar 

  4. Orús, R.: Advances on tensor network theory: symmetries, fermions, entanglement, and holography. Eur. Phys. J. B 87, 280 (2014)

    Article  ADS  Google Scholar 

  5. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Pearson Education, Noida (2006)

    MATH  Google Scholar 

  6. Young, A.: Quantum Finite State Machines. University of California, Davis (2014)

    Google Scholar 

  7. Wiesner, K., Crutchfield, J.P.: Computation in finitary stochastic and quantum processes. Phys. D 237(9), 1173–1195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biamonte, J.D., Clark, S.R., Jaksch, D.: Categorical tensor network states. AIP Adv. 1(4), 042172 (2011)

    Article  ADS  Google Scholar 

  9. “Matrix Product Formalism”, http://www2.mpq.mpg.de/Theorygroup/CIRAC/wiki/images/9/9f/Eckholt_Diplom.pdf (2016). Accessed 18 Dec 2016

  10. Greenberger, D.M.: GHZ (Greenberger–Horne–Zeilinger) Theorem and GHZ States Compendium of Quantum Physics, pp. 258–263. Springer, Berlin (2009)

    Book  Google Scholar 

  11. Gabriele, U.: Geometry of GHZ type quantum states. Ph. D. Thesis, Uniwien (2013)

  12. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59(7), 799 (1987)

    Article  ADS  Google Scholar 

  13. Raussendorf, R.: Measurement-based Quantum computation with cluster states. Int. J. Quantum Inf. 7(06), 1053–1203 (2009)

    Article  MATH  Google Scholar 

  14. Crutchfield, J.P., Wiesner, K.: Intrinsic quantum computation. Phys. Lett. A 374(4), 375–380 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Wiesner, K., Crutchfield, J.P.: Computation in finitary stochastic and quantum processes. Phys. D 237(9), 1173–1195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wiesner, K., Crutchfield, J.P.: Language diversity of measured quantum processes. Int. J. Unconv. Comput. 4(1), 99–112 (2008)

    Google Scholar 

  17. Kondacs and Watrous, J.: On the power of quantum finite state automata, In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, pp. 66–75. Miami Beach, Florida. IEEE (1997)

  18. Ambainis and Freivalds, R.: 1-way quantum finite automata: Strengths, weaknesses and generalizations, In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, pp. 332–341. Palo Alto, California, IEEE (1998)

  19. Freivalds, R., Yakaryilmaz, A., Cem Say, A.C.: A new family of nonstochastic languages. Inf. Process. Lett. 110(10), 410–413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandeep Singh Bhatia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, A.S., Kumar, A. Quantifying matrix product state. Quantum Inf Process 17, 41 (2018). https://doi.org/10.1007/s11128-017-1761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1761-1

Keywords

Navigation