Skip to main content
Log in

Asymmetric bidirectional controlled remote preparation of an arbitrary four-qubit cluster-type state and a single-qubit state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel scheme for asymmetric bidirectional controlled remote state preparation (ABCRSP) via a ten-qubit entangled state as the quantum channel. In this scheme, two distant parties, Alice and Bob are not only senders but also receivers, and Alice wants to remotely prepare a single-qubit state at Bob’s site; at the same time, Bob wishes to help Alice remotely prepare an arbitrary four-qubit cluster-type entangled state. It is shown that only if the two senders and the controller collaborate with each other, the ABCRSP can be completed successfully. We demonstrate that the total success probability of the ABCRSP in this scheme can reach 1, that is, the scheme is deterministic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.J.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  3. Dür, W., Briegel, H.J.: Stability of macroscopic entanglement under decoherence. Phys. Rev. Lett. 92, 180403 (2004)

    Article  Google Scholar 

  4. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  5. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)

    Article  ADS  Google Scholar 

  6. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)

    Article  ADS  Google Scholar 

  7. Wang, X.W., Shan, Y.G., Xia, L.X., Lu, M.W.: Dense coding and teleportation with one-dimensional cluster states. Phys. Lett. A 364, 7–11 (2007)

    Article  ADS  MATH  Google Scholar 

  8. Li, D.C., Cao, Z.L.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464–466 (2007)

    Article  ADS  Google Scholar 

  9. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  10. Zhang, L.L., Zhan, Y.B., Zhang, Q.Y.: Controlled quantum secure direct communication by using four particle cluster states. Int. J. Theor. Phys. 48, 2971–2976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  12. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  13. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  14. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold Sn-1. Phys. Rev. A 65, 022316 (2002)

    Article  ADS  Google Scholar 

  16. Audenaert, K., Plenio, M.B., Eisert, J.: Entanglement cost under positive-partial-transpose-preserving operations. Phys. Rev. Lett. 90, 027901 (2003)

    Article  ADS  Google Scholar 

  17. Abeysinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68, 062319 (2003)

    Article  ADS  Google Scholar 

  18. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  19. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  20. Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A 72, 052315 (2005)

    Article  ADS  Google Scholar 

  21. Zhan, Y.B.: Remote state preparation of a Greenberger–Horne–Zeilinger class state. Commun. Theor. Phys. 43, 637–640 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zhan, Y.B., Wang, Y.W.: Probabilistic remote preparation of a three-particle entangled state via two different non-maximally entangled channels. Commun. Theor. Phys. 48, 449–452 (2007)

    Article  ADS  Google Scholar 

  23. Ma, P.C., Zhan, Y.B.: Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state. Chin. Phys. B 17, 445–450 (2008)

    Article  ADS  Google Scholar 

  24. Liu, J.M., Feng, X.L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. Europhys. Lett. 87, 30006 (2009)

    Article  ADS  Google Scholar 

  25. Shi, J., Zhan, Y.B.: Probabilistic remote preparation of a tripartite high-dimensional equatorial entangled state. Commun. Thoer. Phys. 51, 239–243 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Zhan, Y.B., Zhang, Q.Y., Shi, J., Ma, P.C., Hu, B.L.: An efficient and economic scheme for remotely preparing a multi-qudit state via a single entangled qudit pair. Commun. Thoer. Phys. 54, 463–468 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Zhan, Y.B.: Remotely preparing a four-dimensional quantum state via positive operator-valued measure. Int. J. Theor. Phys. 51, 3001–3012 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhan, Y.B.: Deterministic remote preparation of arbitrary two- and three-qubit states. Europhys. Lett. 98, 40005 (2012)

    Article  ADS  Google Scholar 

  29. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Deterministic remote preparation of an asymmetric five-party three-qubit entangled state. Laser Phys. 26, 115203 (2016)

    Article  ADS  Google Scholar 

  30. Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271–276 (2003)

    Article  ADS  Google Scholar 

  31. Babichev, S.A., Brezger, B., Lvovsky, A.I.: Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. Phys. Rev. Lett. 92, 047903 (2004)

    Article  ADS  Google Scholar 

  32. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  33. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  34. Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  35. Ma, P.C., Zhan, Y.B.: Scheme for remotely preparing a four-particle entangled cluster-type state. Opt. Commun. 283, 2640–2643 (2010)

    Article  ADS  Google Scholar 

  36. Ma, S.Y., Chen, X.B., Luo, M.X., Zhang, R., Yang, Y.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284, 4088–4093 (2011)

    Article  ADS  Google Scholar 

  37. Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50, 2748–2757 (2011)

    Article  MATH  Google Scholar 

  38. Zhan, Y.B., Fu, H., Li, X.W., Ma, P.C.: Deterministic remote preparation of a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 52, 2615–2622 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cao, T.B., Ngoyen, B.A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 015003 (2014)

    Article  ADS  Google Scholar 

  40. Bich, C.T.: Controlled simultaneously state preparation at many remote locations with a new cluster state type. Int. J. Theor. Phys. 54, 139–152 (2015)

    Article  MATH  Google Scholar 

  41. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14, 4263–4278 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Zhang, D., Zha, X.W., Duan, Y.J., Wei, Z.H.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Int. J. Theor. Phys. 55, 440–446 (2016)

    Article  MATH  Google Scholar 

  43. Lu, Q.C., Liu, D.P., He, Y.H., et al.: Linear-optics-based bidirectional controlled remote state preparation via five-photon cluster-type states for quantum communication network. Int. J. Theor. Phys. 55, 535–547 (2016)

    Article  MATH  Google Scholar 

  44. Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169–2179 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Huang, Z.H.: Quantum state sharing of an arbitrary three-qubit state by using a seven-qubit entangled state. Int. J. Theor. Phys. 54, 3438–3441 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11547023, 51605338, 11604115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Cheng Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, PC., Chen, GB., Li, XW. et al. Asymmetric bidirectional controlled remote preparation of an arbitrary four-qubit cluster-type state and a single-qubit state. Quantum Inf Process 16, 308 (2017). https://doi.org/10.1007/s11128-017-1764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1764-y

Keywords

Navigation