Skip to main content
Log in

Mediation of entanglement and nonlocality of a single fermion

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Entanglement is one of the most distinctive features of quantum mechanics and is now considered a fundamental resource in quantum information processing, such as in the protocols of quantum teleportation and quantum key distribution. In general, to extract its power in a useful form, it is necessary to generate entanglement between two or more quantum systems separated by long distances, which is not an easy task due to its fragility under environmental disturbance. Here, we propose a method to create entanglement between two distant fermionic particles, which never interact directly by using a third fermion to mediate the correlation. The protocol initiates with three indistinguishable fermions in a separable state, which are allowed to interact in pairs according to the Hong–Ou–Mandel effect. As a result, it is demonstrated that bipartite maximally entangled states can be generated with an efficiency of about 56%, which makes the method a potential candidate for practical quantum information applications. Furthermore, we use the same protocol to show how the mediator fermion exhibits nonlocal properties, giving a new insight on the long-standing discussion about nonlocality of a single particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bell, J.S.: On the Einstein-Poldolsky-Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  7. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  9. Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  10. Hensen, B., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682 (2015)

    Article  ADS  Google Scholar 

  11. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)

    Article  ADS  Google Scholar 

  12. Lim, Y.L., Beige, A.: Generalised Hong–Ou–Mandel experiments with bosons and fermions. New J. Phys. 7, 155 (2005)

    Article  ADS  Google Scholar 

  13. Dunningham, J., Vedral, V.: Nonlocality of a single particle. Phys. Rev. Lett. 99, 180404 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bose, S., Home, D.: Generic entanglement generation, quantum statistics, and complementarity. Phys. Rev. Lett. 88, 050401 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zukowski, M., Zeilinger, A., Horne, M.A.: Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Phys. Rev. A 55, 2564 (1997)

    Article  ADS  Google Scholar 

  16. Gerry, C.C., Knigh, P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  17. Dowling, J.: Quantum optical metrology–the lowdown on high-N00N states. Contemp. Phys. 49, 125 (2008)

    Article  ADS  Google Scholar 

  18. Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett 85, 2733 (2000)

    Article  ADS  Google Scholar 

  19. D’Angelo, M., Chekhova, M.V., Shih, Y.: Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001)

    Article  ADS  Google Scholar 

  20. Mitchell, M.W., Lundeen, J.S., Steinberg, A.M.: Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161 (2004)

    Article  ADS  Google Scholar 

  21. Eisenberg, H.S., Hodelin, J.F., Khoury, G., Bouwmeester, D.: Multiphoton path entanglement by non-local bunching. Phys. Rev. Lett. 94, 090502 (2005)

    Article  ADS  Google Scholar 

  22. Nagata, T., Okamoto, R., O’Brien, J.L., Sasaki, K., Takeuchi, S.: Beating the standard quantum limit with four-entangled photons. Science 316, 726 (2007)

    Article  ADS  Google Scholar 

  23. Di Martino, G., et al.: Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect. Phys. Rev. Appl. 1, 034004 (2014)

    Article  ADS  Google Scholar 

  24. Fakonas, J.S., Lee, H., Kelaita, Y., Atwater, H.: Two-plasmon quantum interference. Nat. Photonics 8, 317 (2014)

    Article  ADS  Google Scholar 

  25. Lopes, R., et al.: Atomic Hong–Ou–Mandel experiment. Nature 520, 66 (2015)

    Article  ADS  Google Scholar 

  26. Toyoda, K., Hiji, R., Noguchi, A., Urabe, S.: Hong–Ou–Mandel interference of two phonons in trapped ions. Nature 527, 74 (2015)

    Article  ADS  Google Scholar 

  27. Henny, M., et al.: The fermionic Hanbury Brown and Twiss experiment. Science 284, 296 (1999)

    Article  ADS  Google Scholar 

  28. Liu, R.C., Odom, B., Yamamoto, Y., Tarucha, S.: Quantum interference in electron collision. Nature 391, 263 (1998)

    Article  ADS  Google Scholar 

  29. Oliver, W.D., et al.: Hanbury Brown and Twiss-type experiment with electrons. Science 284, 299 (1999)

    Article  ADS  Google Scholar 

  30. Bernardo, B.L.: How a single photon can mediate entanglement between two others. Ann. Phys. 373, 80 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Bernardo, B.L., Canabarro, A., Azevedo, S.: How a single particle simultaneously modifies the physical reality of two distant others: a quantum nonlocality and weak value study. Sci. Rep. 7, 39767 (2017)

    Article  ADS  Google Scholar 

  32. Irvine, W.T.M., Hodelin, J.F., Simon, C., Bouwmeester, D.: Realization of Hardy’s thought experiment with photons. Phys. Rev. Lett. 95, 030401 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Penrose, R.: Uncertainty in quantum mechanics: faith or fantasy? Phil. Trans. R. Soc. A 369, 4864 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Feynman, R.P., Leighton, L.B., Sands, M.: The Feynman Lectures on Physics, vol. 3. Addison-Wesley, Boston (1963)

    MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges financial support from the Brazilian Funding Agency CNPq, Grant Number 309292/2016-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertúlio de Lima Bernardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardo, B.d.L. Mediation of entanglement and nonlocality of a single fermion. Quantum Inf Process 17, 7 (2018). https://doi.org/10.1007/s11128-017-1771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1771-z

Keywords

Navigation