Skip to main content

Advertisement

Log in

Violation of Bell inequalities for arbitrary-dimensional bipartite systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we consider the violation of Bell inequalities for quantum system \(\mathbb {C}^K\otimes \mathbb {C}^K\) (integer \(K\ge 2\)) with group theoretical method. For general M possible measurements, and each measurement with K outcomes, the Bell inequalities based on the choice of two orbits are derived. When the observables are much enough, the quantum bounds are only dependent on M and approximate to the classical bounds. Moreover, the corresponding nonlocal games with two different scenarios are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physica 1, 195–200 (1964)

    Google Scholar 

  2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information Volume I: Basic Concepts. World Scientific Publishing, Singapore (2004)

    Book  MATH  Google Scholar 

  4. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  MATH  Google Scholar 

  5. Ohya, M., Volovich, I.: Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems. Springer Science+Business Media B.V., New York (2011)

    Book  MATH  Google Scholar 

  6. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)

    Article  ADS  Google Scholar 

  7. Kaszlikowski, D., Gnacinski, P., Zukowski, M., Miklaszewski, W., Zeilinger, A.: Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418 (2000)

    Article  ADS  Google Scholar 

  8. Werner, R.F., Wolf, M.M.: All-multipartite Bell-correlation inequalities for two dichotomic observables per site. Phys. Rev. A 64, 032112 (2001)

    Article  ADS  Google Scholar 

  9. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Son, W., Lee, J., Kim, M.S.: Generic Bell inequalities for multipartite arbitrary dimensional systems. Phys. Rev. Lett. 96, 060406 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Cabello, A., Severini, S., Winter, A.: Graph-theoretic approach to quantum correlations. Phys. Rev. Lett. 112, 040401 (2014)

    Article  ADS  Google Scholar 

  12. Gűney, V.U., Hillery, M.: Bell inequalities from group actions of single-generator groups. Phys. Rev. A 90, 062121 (2014)

    Article  ADS  Google Scholar 

  13. Gűney, V.U., Hillery, M.: Bell inequalities from group actions: three parties and non-Abelian groups. Phys. Rev. A 91, 052110 (2015)

    Article  ADS  Google Scholar 

  14. Bolonek-Lasoń, K.: Violation of Bell inequality based on \(S_4\) symmetry. Phys. Rev. A 94, 022107 (2016)

    Article  ADS  Google Scholar 

  15. Bolonek-Lasoń, K., Sobieski, S.: Violation of Bell inequalities from \(S_4\) symmetry: the three orbits case. Quantum Inf. Process. 16, 38 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Cornwell, J.F.: Group Theory in Physics, vol. 1. Academic, London (1984)

    MATH  Google Scholar 

  17. Rotman, J.: An Introduction to the Theory of Groups. Springer, New York (1995)

    Book  MATH  Google Scholar 

  18. Sadiq, M.: Experiments with Entangled Photons. Holmbergs, Malmö (2016)

    Google Scholar 

  19. Anand, N., Benjamin, C.: Do quantum strategies always win? Quantum Inf. Process. 14, 4027–4038 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC 11571119 and NSFC 11475178.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Yang.

Appendices

Appendix 1

Below we give the explicit calculation procedure of \(\lambda _{\max }^O\) (4), the largest eigenvalue of O (3).

To be connivent, we choose

$$\begin{aligned} U= & {} | w_0 \rangle \langle w_0|+e^{-i2\pi /MK} | w_1 \rangle \langle w_1|+e^{-i4\pi /MK} | w_2 \rangle \langle w_2| \nonumber \\&+ \cdots + e^{i4\pi /MK} | w_{K-2} \rangle \langle w_{K-2}|+ e^{i2\pi /MK} | w_{K-1} \rangle \langle w_{K-1}|. \end{aligned}$$
(8)

Note that the eigenstates of \(U\otimes U\) are states of the form \(\left| \left. w_kw_l\right\rangle \right. \) for \(k,l=0,1,2,\ldots , K-1\), and all eigenvalues are degenerate. There is a spectral decomposition for \( U\otimes U\),

$$\begin{aligned} U\otimes U= \sum _\lambda \lambda P_\lambda , \end{aligned}$$
(9)

where \(P_\lambda \) is the projector onto the eigenspace of \(U\otimes U\) with eigenvalue \(\lambda \), and \(P_\lambda \) satisfy properties \(\sum _\lambda P_\lambda =Id\) and \(P_\lambda P_{\lambda '} =\delta _{\lambda \lambda '}P_\lambda \). Thus, the operator O can be simplified as follows:

$$\begin{aligned} O= & {} \sum _{j=0}^{MK-1}(U\otimes U)^j\left( \left| \left. 0v_1^0\right\rangle \right. \left. \left\langle 0v_1^0\right. \right| +\left| \left. 0v_1^1\right\rangle \right. \left. \left\langle 0v_1^1\right. \right| \right) (U^{\dag }\otimes U^{\dag })^j \nonumber \\= & {} \sum _{j=0}^{MK-1}\left( \sum _\lambda \lambda P_\lambda \right) ^j\left( \left| \left. 0v_1^0\right\rangle \right. \left. \left\langle 0v_1^0\right. \right| +\left| \left. 0v_1^1\right\rangle \right. \left. \left\langle 0v_1^1\right. \right| \right) \left( \sum _{\lambda '} \lambda '^* P_{\lambda '} ^{\dag }\right) ^j \nonumber \\= & {} MK\sum _\lambda P_\lambda \left( \left| \left. 0v_1^0\right\rangle \right. \left. \left\langle 0v_1^0\right. \right| +\left| \left. 0v_1^1\right\rangle \right. \left. \left\langle 0v_1^1\right. \right| \right) P_{\lambda }. \end{aligned}$$
(10)

Denote by \(L(\lambda )\) the subspace spanned by all eigenvectors \(\{u_\lambda ^{\lambda _j} \}\) of \(U\otimes U\) corresponding to the eigenvalue \(\lambda \). Then the eigenvector corresponding to the largest eigenvalue of O lies in the subspace \(P_\lambda (\left| \left. 0v_1^0\right\rangle \right. \left. \left\langle 0v_1^0\right. \right| +\left| \left. 0v_1^1\right\rangle \right. \left. \left\langle 0v_1^1\right. \right| ) P_{\lambda }\) when \(L(\lambda )\) has maximal dimension.

The case I

If integer \(K>1\) is odd, the eigenvector corresponding to the largest eigenvalue of O lies in the subspace \(P_1\). The eigenvectors of \(U\otimes U\) corresponding to eigenvalue 1 are as follows:

$$\begin{aligned} \begin{array}{ccccc} |w_1w_{K-1} \rangle , &{} |w_2w_{K-2} \rangle , &{} \ldots &{} |w_{\frac{K-1}{2}}w_{\frac{K+1}{2}} \rangle , &{} |w_0w_0 \rangle ,\\ |w_{K-1}w_1 \rangle , &{} |w_{K-2}w_2 \rangle , &{} \ldots &{} |w_{\frac{K+1}{2}}w_{\frac{K-1}{2}} \rangle . &{} \end{array} \end{aligned}$$

Denote

$$\begin{aligned} R=P_{1}\left( \left| \left. 0v_1^0\right\rangle \right. \left. \left\langle 0v_1^0\right. \right| +\left| \left. 0v_1^1\right\rangle \right. \left. \left\langle 0v_1^1\right. \right| \right) P_{1}, \quad \left| \left. \psi _1\right\rangle \right. =P_{1}\left| \left. 0v_1^0\right\rangle \right. , \quad \left| \left. \psi _2\right\rangle \right. =P_{1}\left| \left. 0v_1^1\right\rangle \right. .\nonumber \\ \end{aligned}$$
(11)

Suppose that the eigenvectors of R corresponding to eigenvalue \(\mu \) are \(\sum _{j=1}^{2}x_j\left| \left. \psi _j\right\rangle \right. \), then the eigenvalue equation implies that \(\sum _{j=1}^{2}x_j\langle \psi _k | \psi _j\rangle =\mu x_k\). Set the matrix

$$\begin{aligned} \Omega =\left[ \begin{array}{cc} \langle \psi _1 | \psi _1\rangle &{}\quad \langle \psi _1 | \psi _2\rangle \\ \langle \psi _2 | \psi _1\rangle &{}\quad \langle \psi _2 | \psi _2\rangle \\ \end{array} \right] , \end{aligned}$$

then we have

$$\begin{aligned} \Omega \left[ \begin{array}{c} x_1 \\ x_2\\ \end{array} \right] =\mu \left[ \begin{array}{c} x_1 \\ x_2\\ \end{array} \right] . \end{aligned}$$

The eigenvalues of \(\Omega \) are exactly the ones of R. For \(j=0,\ 1\), since

$$\begin{aligned} \left| \left. v_1^j\right\rangle \right.= & {} \frac{1}{\sqrt{K}}\left( \left| \left. w_0\right\rangle \right. +e^{-\frac{i\pi 2(M+j)}{MK}}\left| \left. w_1\right\rangle \right. +e^{-\frac{i\pi 4(M+j)}{MK}}\left| \left. w_2\right\rangle \right. +\cdots \right. \\&\left. +\,e^{\frac{i\pi 4(M+j)}{MK}}\left| \left. w_{K-2}\right\rangle \right. +e^{\frac{i\pi 2(M+j)}{MK}}\left| \left. w_{K-1}\right\rangle \right. \right) , \end{aligned}$$

it implies that

$$\begin{aligned} \left| \left. \mu _1\right\rangle \right.= & {} P_1\left| \left. 0v_1^0\right\rangle \right. =\frac{1}{K}\left( \left| \left. w_0w_0\right\rangle \right. +e^{\frac{i\pi 2}{K}}\left| \left. w_1w_{K-1}\right\rangle \right. +e^{-\frac{i\pi 2}{K}}\left| \left. w_{K-1}w_1\right\rangle \right. +e^{\frac{i\pi 4}{K}}\left| \left. w_2w_{K-2}\right\rangle \right. \right. \\&\left. +\,e^{\frac{-i\pi 4}{K}}\left| \left. w_{K-2}w_2\right\rangle \right. +\cdots +e^{\frac{i\pi (K-1)}{K}}|w_{\frac{K-1}{2}}w_{\frac{K+1}{2}}\rangle + e^{-\frac{i\pi (K-1)}{K}}|w_{\frac{K+1}{2}}w_{\frac{K-1}{2}}\rangle \right) , \end{aligned}$$

and

$$\begin{aligned} \left| \left. \mu _2\right\rangle \right.= & {} P_1\left| \left. 0v_1^1\right\rangle \right. =\frac{1}{K}(\left| \left. w_0w_0\right\rangle \right. +e^{\frac{i\pi 2(M+1)}{MK}}\left| \left. w_1w_{K-1}\right\rangle \right. +e^{-\frac{i\pi 2(M+1)}{MK}}\left| \left. w_{K-1}w_1\right\rangle \right. \\&+\,e^{\frac{i\pi 4(M+1)}{MK}}\left| \left. w_2w_{K-2}\right\rangle \right. +e^{-\frac{i\pi 4(M+1)}{MK}}\left| \left. w_{K-2}w_2\right\rangle \right. +\cdots \\&+\,e^{\frac{i\pi (K-1)(M+1)}{MK}}|w_{\frac{K-1}{2}}w_{\frac{K+1}{2}}\rangle + e^{-\frac{i\pi (K-1)(M+1)}{MK}}|w_{\frac{K+1}{2}}w_{\frac{K-1}{2}}\rangle ). \end{aligned}$$

Thus, \(\langle \mu _1|\mu _1 \rangle =\langle \mu _2|\mu _2 \rangle =\frac{1}{K}\),

$$\begin{aligned} \langle \mu _1|\mu _2\rangle= & {} \frac{1}{K^2}\left( 1+e^{\frac{i\pi 2}{MK}}+e^{-\frac{i\pi 2}{MK}}+e^{\frac{i\pi 4}{MK}} +e^{-\frac{i\pi 4}{MK}}+\cdots +e^{\frac{i\pi (K-1)}{MK}}+e^{-\frac{i\pi (K-1)}{MK}}\right) \\= & {} \frac{1}{K^2}\left( 1+\cos \frac{(M-2)\pi }{2M}\csc \frac{\pi }{MK}- \cos \frac{(MK-2)\pi }{2MK}\csc \frac{\pi }{MK}\right) \\= & {} \frac{1}{K^2}\sin \frac{\pi }{M}\csc \frac{\pi }{MK}=\langle \mu _2|\mu _1\rangle . \end{aligned}$$

The largest eigenvalue of \(\Omega \) is \((K+\sin \frac{\pi }{M}\csc \frac{\pi }{MK})/K^2\). Thus, the largest eigenvalue \(\lambda _{\max }^O\) of O is

$$\begin{aligned} \lambda _{\max }^O= M\left( K+\sin \frac{\pi }{M}\csc \frac{\pi }{MK}\right) /K. \end{aligned}$$

The case II

If integer \(K>1\) is even, the eigenvector corresponding to the largest eigenvalue of O lies in the subspace \(P_{e^{i2\pi /MK}}\). The eigenvectors of \(U\otimes U\) corresponding to eigenvalue \(e^{i2\pi /MK}\) are as follows:

$$\begin{aligned} \begin{array}{ccccc} |w_0w_{K-1} \rangle , &{} |w_1w_{K-2} \rangle , &{} \ldots &{} |w_{\frac{K-2}{2}}w_{\frac{K}{2}} \rangle , \\ |w_{K-1}w_0 \rangle , &{} |w_{K-2}w_1 \rangle , &{} \ldots &{} |w_{\frac{K}{2}}w_{\frac{K-2}{2}} \rangle . &{} \end{array} \end{aligned}$$

The calculation procedure is similar to Case I. Although the form of matrix \(\Omega \) is different,

$$\begin{aligned} \Omega =\left[ \begin{array}{cc} \frac{1}{K} &{}\quad \frac{1}{K^2} \left( \sin \frac{(K-1)\pi }{MK}\csc \frac{\pi }{MK}+e^{i\pi /M}\right) \\ \frac{1}{K^2} (\sin \frac{(K-1)\pi }{MK}\csc \frac{\pi }{MK}+e^{-i\pi /M}) &{}\quad \frac{1}{K} \\ \end{array} \right] , \end{aligned}$$

we have same the result of eigenvalues of \(\Omega \). Hence, for any integer K, the largest eigenvalue \(\lambda _{\max }^O\) of O is

$$\begin{aligned} \lambda _{\max }^O=M\left( K+\sin \frac{\pi }{M}\csc \frac{\pi }{MK}\right) \Big /K. \end{aligned}$$

Appendix 2

Below we show that the quantum bounds \(\lambda _{\max }^O\) (4) only depend on M when M is large enough.

The partial derivative of function f(xy) with respect to y is as follows:

$$\begin{aligned} \frac{\partial f(x,y) }{\partial y}=\csc (\pi x y) \sin (\pi x) - \pi x y \cot (\pi x y) \csc (\pi x y)\sin (\pi x), \end{aligned}$$
(12)

which always exceeds 0. Thus, the continuous function f(xy) is a monotonic increasing function for any fixed x.

For the functions

$$\begin{aligned} f\left( x,\frac{1}{2}\right) = 1+\cos \frac{ \pi x}{2} \quad {\text{ a }nd } \quad f(x,0) := \lim _{y\rightarrow 0}f(x,y)= 1+\frac{1}{\pi x}\sin (\pi x), \end{aligned}$$

we draw the graphs of functions \(f(x,\frac{1}{2})\) and f(x, 0) in Fig. 2, function \(f(x,\frac{1}{2})\) is solid, and function f(x, 0) is dotted. From Fig. 2, we see that when x is near to 0, f(x, 0) approaches \(f(x,\frac{1}{2})\).

Fig. 2
figure 2

Graphs of f(x, 0) and \(f(x,\frac{1}{2})\)

That is to say, when the number of measurements is large enough, the violation of Bell inequality is determined by the number of measurements M and independent of K, the number of outcomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zheng, ZJ. Violation of Bell inequalities for arbitrary-dimensional bipartite systems. Quantum Inf Process 17, 12 (2018). https://doi.org/10.1007/s11128-017-1782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1782-9

Keywords

Navigation