Skip to main content
Log in

Entropic cohering power in quantum operations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aberg, J.: Quantifying superposition. arXiv:quant-ph/0612146v1 (2006)

  2. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  3. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  4. Angelo, R.M., Ribeiro, A.D.: Wave C particle duality: an information-based approach. Found. Phys. 45(11), 140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rodrguez-Rosario, A.C., Frauenheim, T., Aspuru-Guzik, A.: Thermodynamics of quantum coherence. arXiv:1308.1245v1 (2013)

  6. Marvian, I., Spekkens, R.W.: Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A 90, 062110 (2014)

    Article  ADS  Google Scholar 

  7. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    Article  ADS  Google Scholar 

  8. Marvian, I., Spekkens, R.W.: Extending noethers theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5, 3821 (2014)

    Article  ADS  Google Scholar 

  9. Karpat, G., Cakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)

    Article  ADS  Google Scholar 

  10. Aberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  11. Monras, A., Checinska, A., Ekert, A.: Witnessing quantum coherence in the presence of noise. New J. Phys. 16, 063041 (2014)

    Article  ADS  Google Scholar 

  12. Li, H., et al.: Quantum coherence rather than quantum correlations reflect the effects of a reservoir on a systems work capability. Phys. Rev. E 89, 052132 (2014)

    Article  ADS  Google Scholar 

  13. Shao, L.H., Xi, Z., Fan, H., Li, Y.: The fidelity and trace norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  14. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  15. Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)

    Article  ADS  Google Scholar 

  16. Singh, U., Bera, M.N., Misra, A., Pati, A.K.: Erasing quantum coherence: an operational approach. arXiv:1506.08186v1 (2015)

  17. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  18. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  20. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  21. Yuan, X., Zhou, H.Y., Cao, H.Y., Ma, X.F.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  22. Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)

    Article  ADS  Google Scholar 

  23. Du, S.P., Bai, Z.F., Guo, Y.: Conditions for coherence transformations under incoherent operations. Phys. Rev. A 91, 052120 (2015)

    Article  ADS  Google Scholar 

  24. Killoran, N., Steinhoff, F.E.S., Plenio, M.B.: Converting nonclassicality into entanglement. Phys. Rev. Lett. 116, 080402 (2016)

    Article  ADS  Google Scholar 

  25. Ma, J.J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  26. Yadin, B., Ma, J.J., Girolami, D., Gu, M., Vedral, V.: Quantum processes which do not use coherence. Phys. Rev. X 6, 041028 (2016)

    Google Scholar 

  27. Hillery, M.: Coherence as a resource in decision problems: the Deutsch–Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)

    Article  ADS  Google Scholar 

  28. Peng, Y., Jiang, Y., Fan, H.: Maximally coherent states and coherence-preserving operations. Phys. Rev. A 93, 032326 (2016)

    Article  ADS  Google Scholar 

  29. Kammerlande, P., Anders, J.: Coherence and measurement in quantum thermodynamics. Sci. Rep. 6, 22174 (2016)

    Article  ADS  Google Scholar 

  30. Streltsov, A., Adesso, G., Plenio, M.P.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2016)

    Article  ADS  Google Scholar 

  31. Mani, M., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)

    Article  ADS  Google Scholar 

  32. Bu, K., Zhang, L., Wu, J.: Cohering power of quantum operations. Phys. Lett. A 381, 1670 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Garcia-Diaz, M., Egloff, D., Plenio, M.B.: A note on coherence power of N-dimensional unitary operators. Quant. Inf. Comput. 16, 1282 (2016)

    MathSciNet  Google Scholar 

  34. Situ, H., Hu, X.: Dynamics of relative entropy of coherence under Markovian channels. Quant. Inf. Process. 15, 4649 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  36. Xi, Z.: Information gain and information leak in quantum measurements. Phys. Rev. A 93, 052308 (2016)

    Article  ADS  Google Scholar 

  37. Roga, W., Fannes, M., Zyczkowski, K.: Universal bounds for the Holevo quantity, coherent information, and the Jensen–Shannon Divergence. Phys. Rev. Lett. 105, 040505 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  38. Xi, Z., Li, Y., Fan, H.: Quantum coherence and quantum correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  39. Giovannetti, V., Fazio, R.: Information-capacity description of spin-chain correlations. Phys. Rev. A 71, 032314 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Z. Xi is supported by the NSFC (Grant Nos. 61671280 and 11531009), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017KJXX-92), the Funded Projects for the Academic Leaders and Academic Backbones, Shaanxi Normal University (16QNGG013) and the Fundamental Research Funds for the Central Universities (GK201502004). M. Hu is supported by the NSFC (Grant No. 11675129). Y. Li is supported by the NSFC (Grant No. 11671244). H. Fan is supported by MOST of China (2016YFA0302104), NSFC (Grant No. 91536108), and CAS (XDB01010000, XDB21030300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjun Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Z., Hu, ML., Li, Y. et al. Entropic cohering power in quantum operations. Quantum Inf Process 17, 34 (2018). https://doi.org/10.1007/s11128-017-1803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1803-8

Keywords

Navigation