Abstract
Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aberg, J.: Quantifying superposition. arXiv:quant-ph/0612146v1 (2006)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)
Angelo, R.M., Ribeiro, A.D.: Wave C particle duality: an information-based approach. Found. Phys. 45(11), 140 (2015)
Rodrguez-Rosario, A.C., Frauenheim, T., Aspuru-Guzik, A.: Thermodynamics of quantum coherence. arXiv:1308.1245v1 (2013)
Marvian, I., Spekkens, R.W.: Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A 90, 062110 (2014)
Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)
Marvian, I., Spekkens, R.W.: Extending noethers theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5, 3821 (2014)
Karpat, G., Cakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)
Aberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)
Monras, A., Checinska, A., Ekert, A.: Witnessing quantum coherence in the presence of noise. New J. Phys. 16, 063041 (2014)
Li, H., et al.: Quantum coherence rather than quantum correlations reflect the effects of a reservoir on a systems work capability. Phys. Rev. E 89, 052132 (2014)
Shao, L.H., Xi, Z., Fan, H., Li, Y.: The fidelity and trace norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)
Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)
Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)
Singh, U., Bera, M.N., Misra, A., Pati, A.K.: Erasing quantum coherence: an operational approach. arXiv:1506.08186v1 (2015)
Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)
Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)
Yuan, X., Zhou, H.Y., Cao, H.Y., Ma, X.F.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)
Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)
Du, S.P., Bai, Z.F., Guo, Y.: Conditions for coherence transformations under incoherent operations. Phys. Rev. A 91, 052120 (2015)
Killoran, N., Steinhoff, F.E.S., Plenio, M.B.: Converting nonclassicality into entanglement. Phys. Rev. Lett. 116, 080402 (2016)
Ma, J.J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)
Yadin, B., Ma, J.J., Girolami, D., Gu, M., Vedral, V.: Quantum processes which do not use coherence. Phys. Rev. X 6, 041028 (2016)
Hillery, M.: Coherence as a resource in decision problems: the Deutsch–Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)
Peng, Y., Jiang, Y., Fan, H.: Maximally coherent states and coherence-preserving operations. Phys. Rev. A 93, 032326 (2016)
Kammerlande, P., Anders, J.: Coherence and measurement in quantum thermodynamics. Sci. Rep. 6, 22174 (2016)
Streltsov, A., Adesso, G., Plenio, M.P.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2016)
Mani, M., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)
Bu, K., Zhang, L., Wu, J.: Cohering power of quantum operations. Phys. Lett. A 381, 1670 (2017)
Garcia-Diaz, M., Egloff, D., Plenio, M.B.: A note on coherence power of N-dimensional unitary operators. Quant. Inf. Comput. 16, 1282 (2016)
Situ, H., Hu, X.: Dynamics of relative entropy of coherence under Markovian channels. Quant. Inf. Process. 15, 4649 (2016)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Xi, Z.: Information gain and information leak in quantum measurements. Phys. Rev. A 93, 052308 (2016)
Roga, W., Fannes, M., Zyczkowski, K.: Universal bounds for the Holevo quantity, coherent information, and the Jensen–Shannon Divergence. Phys. Rev. Lett. 105, 040505 (2010)
Xi, Z., Li, Y., Fan, H.: Quantum coherence and quantum correlations in quantum system. Sci. Rep. 5, 10922 (2015)
Giovannetti, V., Fazio, R.: Information-capacity description of spin-chain correlations. Phys. Rev. A 71, 032314 (2005)
Acknowledgements
Z. Xi is supported by the NSFC (Grant Nos. 61671280 and 11531009), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017KJXX-92), the Funded Projects for the Academic Leaders and Academic Backbones, Shaanxi Normal University (16QNGG013) and the Fundamental Research Funds for the Central Universities (GK201502004). M. Hu is supported by the NSFC (Grant No. 11675129). Y. Li is supported by the NSFC (Grant No. 11671244). H. Fan is supported by MOST of China (2016YFA0302104), NSFC (Grant No. 91536108), and CAS (XDB01010000, XDB21030300).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xi, Z., Hu, ML., Li, Y. et al. Entropic cohering power in quantum operations. Quantum Inf Process 17, 34 (2018). https://doi.org/10.1007/s11128-017-1803-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1803-8