Skip to main content
Log in

The statistical fluctuation study of quantum key distribution in means of uncertainty principle

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Laser defects in emitting single photon, photon signal attenuation and propagation of error cause our serious headaches in practical long-distance quantum key distribution (QKD) experiment for a long time. In this paper, we study the uncertainty principle in metrology and use this tool to analyze the statistical fluctuation of the number of received single photons, the yield of single photons and quantum bit error rate (QBER). After that we calculate the error between measured value and real value of every parameter, and concern the propagation error among all the measure values. We paraphrase the Gottesman–Lo–Lutkenhaus–Preskill (GLLP) formula in consideration of those parameters and generate the QKD simulation result. In this study, with the increase in coding photon length, the safe distribution distance is longer and longer. When the coding photon’s length is \(N = 10^{11}\), the safe distribution distance can be almost 118 km. It gives a lower bound of safe transmission distance than without uncertainty principle’s 127 km. So our study is in line with established theory, but we make it more realistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wiesner, S.: Conjugate coding. SIG A CT News 15, 78–88 (1983)

    Article  MATH  Google Scholar 

  2. Bennett CH., Brassard, G.: Quantum cryptography: public-key distribution and co in tossing [A]. In: Pro-ceedings of the International Conference on Computers, Systems and Signal Processing, pp. 175–179. Ban-galore Press, India (1984)

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2000)

    Article  ADS  Google Scholar 

  5. Cinelli, C., Barbieri, M., Martini, F.D., et al.: Realization of hyperentangled two-photon states. Int. J. Laser Phys. 15(1), 124–128 (2005)

    Google Scholar 

  6. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bennett, C.H., et al.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)

    Article  MATH  Google Scholar 

  8. Smolin, J.A.: The early days of experimental quantum cryptography. OBM J. Res. Dev. Phys. Inf. 48(1), 47–52 (2004)

    Google Scholar 

  9. Tang, X., et al.: High speed fiber-based quantum key distribution using polarization encoding. In: Proceedings of SPIE. 5893, 58931 A (1–9), (2005)

  10. Tang, X., et al.: Quantum key distribution system operating at sifted-key rate over 4 Mbit/s. In: Proceedings of SPIE. 6244, 62440P(1–8), (2006)

  11. Mink, A., Tang, A. et al.: High speed quantum key distribution system supports one-time pad encryption of real-time video. In: Proceedings of SPIE. 6244, 62440M (1–7), (2006)

  12. Gordon, K.J., et al.: A short wavelength gigahertz clocked fiber-optic quantum key distribution system. IEEE J. Quantum Electron. 40(7), 900–908 (2004)

    Article  ADS  Google Scholar 

  13. Gordon, K.J., et al.: Quantum key distribution system clocked at 2 GHz. Opt. Express 13(8), 3015–3020 (2005)

    Article  ADS  Google Scholar 

  14. Gordon, K.J. et al. 3.3 gigahertz clocked quantum key distribution system. In: ECOC European Conference on Optical Communication, vol. 4, pp. 913–914, (2005)

  15. Takesue, H., Diamanti, E., Honjo, T., Langrock, C., Fejer, M.M., Inoue, K., Yamamoto, Y.: Differential phase shift quantum key distribution experiment over 105 km fibre. New J. Phys. 7(1), 232–232 (2005)

    Article  ADS  Google Scholar 

  16. Takesue, H., Honjo, T., Inoue, K., Diamanti, E., Langrock, C., Fejer, N.M., Yaniamoto, Y.: Ultra-fast differential-phase-shift quantum key distribution using single-photon detectors based on up-conversion in periodically poled lithium niobate waveguides. In Optical Fiber Communication—OFC, (2006)

  17. Stucki, D., Walenta, N., Vannel, F., Thew, R.T., Gisin, N., Zbinden, H., Gray, S., Towery, C.R., Ten, S.: High rate, long-distance quantum key distribution over 250 km of ultralow loss fibres. New J. Phys. 11(7), 075003 (2009)

    Article  ADS  Google Scholar 

  18. Li, H.-W., Wang, S., Huang, J.-Z., Chen, W., Yin, Z.-Q., Li, F.-Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.-C., Bao, W.-S., Han, Z.-F.: Attacking practical quantum key distribution system with wavelength dependent beam splitter and multi-wavelength sources. Phys. Rev. A 84, 062308 (2011)

    Article  ADS  Google Scholar 

  19. Hwang, Won-Young: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  20. Lo, Hoi-Kwong, Ma, Xiongfeng, Chen, Kai: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  21. Xiongfeng, Ma., et al.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)

    Article  Google Scholar 

  22. Gottesman, D., Lo, H.-K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect device. Quantum Info. Comput. 4(5), 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Jiao, R., Tang, S., Zhang, C.: Analysis of statistical fluctuation in decoy state quantum key distribution system. Acta Phys. Sin. 61(5), 50302–050302 (2012)

    Google Scholar 

  24. Lütkenhaus, Norbert: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61(5), 052304 (2000)

    Article  ADS  Google Scholar 

  25. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762–3764 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunwei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., An, H., Zhang, X. et al. The statistical fluctuation study of quantum key distribution in means of uncertainty principle. Quantum Inf Process 17, 52 (2018). https://doi.org/10.1007/s11128-018-1814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1814-0

Keywords

Navigation