Skip to main content
Log in

Measurement-device-independent quantum key distribution with multiple crystal heralded source with post-selection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The multiple crystal heralded source with post-selection (MHPS), originally introduced to improve the single-photon character of the heralded source, has specific applications for quantum information protocols. In this paper, by combining decoy-state measurement-device-independent quantum key distribution (MDI-QKD) with spontaneous parametric downconversion process, we present a modified MDI-QKD scheme with MHPS where two architectures are proposed corresponding to symmetric scheme and asymmetric scheme. The symmetric scheme, which linked by photon switches in a log-tree structure, is adopted to overcome the limitation of the current low efficiency of m-to-1 optical switches. The asymmetric scheme, which shows a chained structure, is used to cope with the scalability issue with increase in the number of crystals suffered in symmetric scheme. The numerical simulations show that our modified scheme has apparent advances both in transmission distance and key generation rate compared to the original MDI-QKD with weak coherent source and traditional heralded source with post-selection. Furthermore, the recent advances in integrated photonics suggest that if built into a single chip, the MHPS might be a practical alternative source in quantum key distribution tasks requiring single photons to work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.; Quantum cryptography. In: Proceedings of the IEEE International Conference Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)

  2. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  3. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Brassard, G., Lutkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)

    Article  ADS  MATH  Google Scholar 

  6. Sun, S.H., Liang, L.M.: Experimental demonstration of an active phase randomization and monitor module for quantum key distribution. Appl. Phys. Lett. 101, 071107 (2012)

    Article  ADS  Google Scholar 

  7. Makarov, V., Skaar, J.: Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols. Quantum Inf. Comput. 86, 0622–0635 (2008)

    MATH  Google Scholar 

  8. Qi, B., Zhao, Y., Ma, X.F., Lo, H.K., Qian, L.: Quantum key distribution with dual detectors. Phys. Rev. A: At. Mol. Opt. Phys. 75, 052304 (2007)

    Article  ADS  Google Scholar 

  9. Makarov, V.: Controlling passively-quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)

    Article  ADS  Google Scholar 

  10. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  11. Rubenok, A., Slater, J.A., Chan, P., Lucio-Martinez, I., Tittel, W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2014)

    Article  Google Scholar 

  12. Ferreira da Silva, T., Vitoreti, D., Xavier, G.B., do Amaral, G.C., Temporao, G.P., vonder Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88, 052303 (2013)

    Article  ADS  Google Scholar 

  13. Liu, Y., Chen, T.Y., Wang, L.J., Liang, H., Shentu, G.L., Wang, J., Cui, K., Yin, H.L., Liu, N.L., Li, L., et al.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)

    Article  ADS  Google Scholar 

  14. Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2013)

    Article  Google Scholar 

  15. Yin, H.L., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)

    Article  ADS  Google Scholar 

  16. Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99, 180503 (2007)

    Article  ADS  Google Scholar 

  17. Ma, X.F., Lo, H.K.: Quantum key distribution with triggering parametric down conversion sources. New J. Phys. 10, 073018 (2008)

    Article  ADS  Google Scholar 

  18. Brida, G., Degiovanni, I.P., Genovese, M., Piacentini, F., Traina, P., Della Frera, A., et al.: ]An extremely low-noise heralded single-photon source: a breakthrough for quantum technologies. Appl. Phys. Lett. 101, 221112 (2012)

    Article  ADS  Google Scholar 

  19. Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)

    Article  ADS  Google Scholar 

  20. Zhou, C., Bao, W.S., Chen, W., Li, H.W., Yin, Z.-Q., Wang, Y., Han, Z.F.: Phase-encoded measurement device independent quantum key distribution with practical spontaneous parametric-down-conversion sources. Phys. Rev. A 88, 052333 (2013)

    Article  ADS  Google Scholar 

  21. Migdall, A.L., Branning, D., Castelletto, S.: Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002)

    Article  ADS  Google Scholar 

  22. Shapiro, J.H., Wong, F.N.: On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls. Opt. Lett. 32, 2698 (2007)

    Article  ADS  Google Scholar 

  23. Mazzarella, L., Ticozzi, F., Sergienko, A.V., Vallone, G., Villoresi, P.: Asymmetric architecture for heralded single photon sources. Phys. Rev. A 88, 023848 (2013)

    Article  ADS  Google Scholar 

  24. Schiavon, M., Vallone, G., Ticozzi, F., Villoresi, P.: Heralded single-photon sources for quantum key distribution applications. Phys. Rev. A 93, 012331 (2016)

    Article  ADS  Google Scholar 

  25. Ma, X.F., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012)

    Article  ADS  Google Scholar 

  26. Sun, S.H., Gao, M., Li, C.Y., Liang, L.M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87, 052329 (2013)

    Article  ADS  Google Scholar 

  27. Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.-K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)

    Article  ADS  Google Scholar 

  28. Francis-Jones, R.J.A., Hoggarth, R.A., Mosley, P.J.: All-fibre multiplexed source of high-purity single photons. Optica 4, 90–96 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11704412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Shang-Hong, Z. & MengYi, D. Measurement-device-independent quantum key distribution with multiple crystal heralded source with post-selection. Quantum Inf Process 17, 50 (2018). https://doi.org/10.1007/s11128-018-1818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1818-9

Keywords

Navigation