Skip to main content
Log in

Squeezed-state quantum key distribution with a Rindler observer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Lengthening the maximum transmission distance of quantum key distribution plays a vital role in quantum information processing. In this paper, we propose a directional squeezed-state protocol with signals detected by a Rindler observer in the relativistic quantum field framework. We derive an analytical solution to the transmission problem of squeezed states from the inertial sender to the accelerated receiver. The variance of the involved signal mode is closer to optimality than that of the coherent-state-based protocol. Simulation results show that the proposed protocol has better performance than the coherent-state counterpart especially in terms of the maximal transmission distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  3. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595–604 (2014)

    Article  ADS  Google Scholar 

  4. Dias, J., Ralph, T.C.: Quantum repeaters using continuous-variable teleportation. Phys. Rev. A 95.2, 022312 (2017)

    Article  Google Scholar 

  5. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  6. Xu, F., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12(11), 113026 (2010)

    Article  ADS  Google Scholar 

  7. Madsen, L.S., Usenko, V.C., Lassen, M., et al.: Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083 (2012)

    Article  Google Scholar 

  8. Weedbrook, C., Pirandola, S., Garciapatron, R., et al.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621–669 (2012)

    Article  ADS  Google Scholar 

  9. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    Article  ADS  Google Scholar 

  10. Ralph, T.C., et al.: Quantum computation with optical coherent states. Phys. Rev. A 68(4), 042319 (2003)

    Article  ADS  Google Scholar 

  11. Peres, A., Daniel, R.: Quantum information and relativity theory. Rev. Mod. Phys. 76(1), 93 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Ahmadi, M., et al.: Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies. Sci. Rep. 4, 4996 (2014)

    Article  Google Scholar 

  13. Bruschi, D.E., et al.: Testing the effects of gravity and motion on quantum entanglement in space-based experiments. New J. Phys. 16(5), 053041 (2014)

    Article  ADS  Google Scholar 

  14. Hao, X., Liu, L., Wu, Y.: Positive solutions for nonlinear fractional semipositone differential equation with nonlocal boundary conditions. J. Nonlinear Sci. Appl. 9(6), 3992–4002 (2016)

  15. Su, D., Ralph, T.C.: Quantum communication in the presence of a horizon. Phys. Rev. D 90(8), 084022-1–084022-8 (2014)

    Article  ADS  Google Scholar 

  16. Bruschi, D.E., et al.: Spacetime effects on satellite-based quantum communications. Phys. Rev. D 90(4), 045041 (2014)

    Article  ADS  Google Scholar 

  17. Bruschi, D.E., Datta, A., Ursin, R., et al.: Quantum estimation of the Schwarzschild space-time parameters of the earth. Phys. Rev. D 90(12), 124001 (2014)

    Article  ADS  Google Scholar 

  18. Downes, T.G., Ralph, T.C., Walk, N.: Quantum communication with an accelerated partner. Phys. Rev. A 87(1), 012327 (2013)

    Article  ADS  Google Scholar 

  19. Ralph, T.C., Walk, N.: Quantum key distribution without sending a quantum signal. New J. Phys. 17(6), 063008 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870 (1976)

    Article  ADS  Google Scholar 

  21. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Eberle, T., Händchen, V., Schnabel, R.: Stable control of 10 dB two-mode squeezed vacuum states of light. Opt. Express 21(9), 11546–11553 (2013)

    Article  ADS  Google Scholar 

  23. Olson, S.J., Ralph, T.C.: Entanglement between the future and the past in the quantum vacuum. Phys. Rev. Lett. 106(11), 110404 (2011)

    Article  ADS  Google Scholar 

  24. Olson, S.J., Ralph, T.C.: Extraction of timelike entanglement from the quantum vacuum. Phys. Rev. A 85.1, 012306 (2012)

    Article  Google Scholar 

  25. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  26. Bachor, H.-A., et al.: A Guide to Experiments in Quantum Optics. Wiley-VCH, Weinheim (2004)

    Book  MATH  Google Scholar 

  27. Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80(3), 787 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gottesman, D., Preskill, J.: Secure quantum key distribution using squeezed states. Phys. Rev. A 63(2), 022309 (2001)

    Article  ADS  Google Scholar 

  29. Furrer, F., et al.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109(10), 100502 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Timothy C. Ralph for explaining formula derivations. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61379153, 61401519, 61572927) and the Fundamental Research Funds for the Central Universities of Central South University (2017zzts144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Appendix

Appendix

The output of an energy scaled homodyne detector can be represented by the operator [26]

$$\begin{aligned} \hat{O}_J(\tau ,\phi )=\hat{b}_\mathrm{S}(\tau ){\hat{b}_\mathrm{L}}^\dag (\tau )e^{i\phi }+{\hat{b}_\mathrm{S}}^\dag (\tau )\hat{b}_\mathrm{L}(\tau )e^{-i\phi }, \end{aligned}$$
(32)

where \(\hat{b}_\mathrm{S}\) and \(\hat{b}_\mathrm{L}\) denote the boson annihilation field operators, while \({\hat{b}_\mathrm{S}}^\dag \) and \({\hat{b}_\mathrm{L}}^\dag \) represent the creation field operators, respectively. The coherent state can be obtained by applying a unitary displacement operation on a vacuum state. The displacement operator is generated by a linear Hamiltonian [8] which can be expressed as

$$\begin{aligned} D(\beta )=\exp {\left[ \beta \left( b^\dag _\mathrm{D}-b_\mathrm{D}\right) \right] }, \end{aligned}$$
(33)

where the subscript D refers to the mode on which the displacement is applied. The operator can be expressed as

$$\begin{aligned} \hat{b}_\mathrm{K}=\int \hbox {d}k_df_\mathrm{K}(k_d,\tau )\hat{b}_{k_d}, \end{aligned}$$
(34)

where \(k_d=(k_{d1},k_{d_2},k_{d_3})\) refers to the detection wave vector and \(k_{d_1}\) denotes the Rindler frequency while \(k_{d_2},k_{d_3}\) being the Minkowski frequencies. The integral is over the whole wave-vector space. Due to the first component of this wave vector is a right Rindler mode which is strictly positive then we have \(\int \hbox {d}k_d=\int ^\infty _0\int ^\infty _{-\infty }\int ^\infty _{-\infty } \hbox {d}k_{d_1}\hbox {d}k_{d_2}\hbox {d}k_{d_3}\). The operator \(\hat{b}_{k_d}\) obeys the usual boson communication relation

$$\begin{aligned} \left[ \hat{b}_{k_d},\hat{b}^\dag _{k'_d}\right] =\delta (k_{d1}-k'_{d1})\delta \left( k_{d2}-k'_{d2}\right) \delta \left( k_{d3}-k'_{d3}\right) . \end{aligned}$$
(35)

The function \(f_\mathrm{K}(k_d)\) localizes the yielded modes in a certain region of space-time, and hence, the mode operators \(\hat{b}_\mathrm{K}\) denote modes detected by a local accelerating observer. The average value of the signal received by Bob is

$$\begin{aligned} X=\left\langle \int \hbox {d}\tau \hat{O}(\tau )\right\rangle . \end{aligned}$$
(36)

Similarly, we also define the variance of the integrated signal

$$\begin{aligned} V=\left\langle \left( \int \hbox {d}\tau \hat{O}(\tau )\right) ^2\right\rangle - \left\langle \int \hbox {d}\tau \hat{O}(\tau )\right\rangle ^2. \end{aligned}$$
(37)

The initial state of both the signal and the local oscillator is the Minkowski vacuum state, \(|0\rangle _M\). Then X can be expressed as

$$\begin{aligned} X(\phi )=\int \hbox {d}\tau \langle 0|_M\hat{D}^\dag (\beta )\left( \hat{b}_\mathrm{S}\hat{b}^\dag _\mathrm{L}e^{i\phi }+\hat{b}^\dag _\mathrm{S}\hat{b}_\mathrm{L}e^{-i\phi }\right) \hat{D}(\beta )|0\rangle _M. \end{aligned}$$
(38)

Moreover, the displacement operation can be expressed as

$$\begin{aligned} \hat{D}^\dag (\beta )\hat{b}_\mathrm{L}\hat{D}(\beta )=\hat{b}_\mathrm{L}+\beta \int \hbox {d}k_df_\mathrm{L}(k_d,\tau )f^*_\mathrm{D}(k_\mathrm{D},\tau ). \end{aligned}$$
(39)

In this equation, the integral part means the overlap part between the displacement and the mode that is being displaced. Iterating the mode operator definitions into the integral, we have

$$\begin{aligned} \begin{aligned} X(\phi )&=\int \hbox {d}\tau \langle 0|_M\left( \hat{b}_\mathrm{S}^\dag e^{i\phi }\left( \hat{b}_\mathrm{L}+\beta \int \hbox {d}k_df_\mathrm{L}(k_d,\tau )\right) \right) \\&\quad +\,\hat{b}_\mathrm{S}e^{-i\phi }\left( \hat{b}^\dag _\mathrm{L}+\beta \int \hbox {d}k_df^*_\mathrm{L}(k_d,\tau )f_\mathrm{D}(k_d,\tau )\right) |0\rangle _M\\&\cong \beta \int \hbox {d}\tau \langle 0|_M\int \hbox {d}k_d\left( \hat{b}^\dag _\mathrm{S}e^{i\phi }f_\mathrm{L}(k_d,\tau )f^*_\mathrm{D}(k_d,\tau )\right. \\&\left. \quad +\,\hat{b}_\mathrm{S}e^{-i\phi }f^*_\mathrm{L}(k_d,\tau )f_\mathrm{D}(k_d,\tau )\right) |0\rangle _M. \end{aligned} \end{aligned}$$
(40)

To calculate out the expectation value of Eq. (40), Bob’s measurement operator is written in Minkowski modes using the transformation relation given in [27]. The Minkowski annihilation operator annihilates the Minkowski vacuum if we assume the transformation of Eq. (39) is linear in the creation and annihilation operators.

$$\begin{aligned} \hat{a}_{k_s}|0\rangle =0, \end{aligned}$$
(41)

and hence, we have equation \(\langle 0|_M\hat{b}_\mathrm{K}|0\rangle _M=\langle 0|_M\hat{b}^\dag _\mathrm{K}|0\rangle _M=0\). We draw a conclusion that the average value of the homodyne signal is zero.

The signal variance can be obtained with the conditions,

$$\begin{aligned} V(\phi )=\langle 0|_M\left( \int \hbox {d}\tau \int \hbox {d}k_d\left[ \hat{b}^\dag _se^{i\phi }f^*_\mathrm{L}(\tau )f_\mathrm{D}(\tau )+\hat{b}_se^{-i\phi }f_\mathrm{L}(\tau )f^*_\mathrm{D}(\tau )\right] ^2\right) . \end{aligned}$$
(42)

The explicit form of the detector wave function is introduced in order to calculate the variance. It is assumed that the detection direction is same as the acceleration and the signal and the local oscillator modes are focused onto the detector. Then the detector wave function can be factored into its inverse and longitudinal components after making the paraxial approximation,

$$\begin{aligned} f_\mathrm{K}(k_d,\tau )=e^{-ik_{d1}a\tau }f_\mathrm{K}(k_{d1})g_\mathrm{K}({k_{d2}})h_\mathrm{K}(k_{d3}). \end{aligned}$$
(43)

It is important to well localize the longitudinal component of the detector wave function. Then we consider a very broad detector wave function in \(k_{d1}\) which is localized spatiotemporally. Specially, we have the definition

$$\begin{aligned} f(x)=\left\{ \begin{array}{ll} \frac{1}{\sqrt{2\pi a}} , &{}\quad k_{d1} > 0 \\ 0 , &{}\quad k_{d1} \le 0\\ \end{array} \right. . \end{aligned}$$
(44)

We can further simplify the second part of Eq. (42)

$$\begin{aligned} \begin{aligned}&\int \hbox {d}\tau \hat{b}_\mathrm{S}e^{-i\phi }\int \hbox {d}k_d f^*_L(k_d)f_\mathrm{D}(k_d)\\&\quad =\int \hbox {d}\tau \int \hbox {d}k'_d\int \hbox {d}k_{d1}\frac{e^{-i(k'_{d1}-k_{d1})a\tau }}{2\pi a}\hat{b}_{k'_d}g_\mathrm{S}(\mathbf {k}'_d)e^{-i\phi }\\&\quad =\int \hbox {d}k_{d1}\hat{b}_{k_{d1},s}f_\mathrm{D}(k_{d1})e^{-i\phi }. \end{aligned} \end{aligned}$$
(45)

The new boson annihilation operator is defined as

$$\begin{aligned} \hat{b}_{k_{d1},\mathrm{K}}\equiv \int \hbox {d}\mathbf {k}_d g_\mathrm{K}(\mathbf {k}_d)\hat{b}_{k_d}. \end{aligned}$$
(46)

The vector form can be expanded as \(g_\mathrm{K}({\mathbf {k}_d})=g_\mathrm{K}(k_{d2})h_\mathrm{K}(k_{d3})\), where \(g_\mathrm{S}\) and \(g_\mathrm{L}\) are assumed to be vertical and the new boson operators satisfy \([\hat{b}_{k_{d1},\mathrm{K}},\hat{b}^\dag _{k_{d1},\mathrm{K}}]=1\) and \([\hat{b}_{k_{d1},\mathrm{S}},\hat{b}^\dag _{k_{d1},\mathrm{L}}]=0\). Besides, it is also assumed that the integral over \(\tau \) is sufficient long and equation \(\int \hbox {d}\tau \frac{1}{2\pi a}e^{-i(k_{d1}-k'_{d1})a\tau }\approx \delta (k_{d1}-k'_{d1})\) holds.

Iterating Eq.(45) into Eq. (42), we have

$$\begin{aligned} \begin{aligned} V(\phi )&\approx \beta ^2\langle 0|_M\int \hbox {d}k_{d1}\int \hbox {d}k'_{d1}\bigg (f_\mathrm{D}(k_{d1})f^*_\mathrm{D}(k'_{d1})\hat{b}_{k_{d1,\mathrm{S}}}\hat{b}^\dag _{k'_{d1,\mathrm{S}}}\\&\quad +\,f^*_\mathrm{D}(k_{d1})f_\mathrm{D}(k'_{d1})\hat{b}^\dag _{k_{d1},\mathrm{S}}\hat{b}_{k'_{d1},\mathrm{S}}\\&\quad +\,f_\mathrm{D}(k_{d1})f_\mathrm{D}(k'_{d1})\hat{b}_{k_{d1},\mathrm{S}}\hat{b}_{k'_{d1},\mathrm{S}}e^{2i\phi }\\&\quad +f^*_\mathrm{D}(k_{d1})f^*_\mathrm{D}(k'_{d1})\hat{b}^\dag _{k_{d1},\mathrm{S}}\hat{b}^\dag _{k'_{d1},\mathrm{S}} e^{-2i\phi }\bigg ). \end{aligned} \end{aligned}$$
(47)

The operator \(\hat{b}_{k_{d1},\mathrm{S}}\) is then expressed in Minkowski modes. Using Eq. (10), we have

$$\begin{aligned} \begin{aligned} \hat{b}_{k_{d1},\mathrm{S}}&=\int \hbox {d}\mathbf {k}_dg_\mathrm{S}(\mathbf {k}_d)\int \hbox {d}k_s(A_{k_dk_s}\hat{a}_{k_s}+B_{k_dk_s}\hat{a}^\dag _{k_s})\\&=\int \hbox {d}k_s\frac{1}{\sqrt{2\pi \omega _s(e^{2\pi k_{d1}}-1)}}\left( \frac{\omega _s+k_{s1}}{\omega _s-k_{s1}}\right) ^{i\frac{1}{2}k_{d1}}\\&\quad \times \left[ e^{\pi k_{d1}}\hat{a}_{k_s}g_\mathrm{S}(\mathbf {k}_s)+\hat{a}^\dag _{k_s}g_\mathrm{S}(-\mathbf {k}_s)\right] . \end{aligned} \end{aligned}$$
(48)

Combining with Eqs. (11), (41) and the identity

$$\begin{aligned} \int \hbox {d}k_s\frac{1}{2\pi \omega _s}\left( \frac{\omega _s+k_{s1}}{\omega _s-k_{s1}}\right) ^{i\frac{1}{2} (x-x')}=\delta (x-x'), \end{aligned}$$
(49)

we find

$$\begin{aligned} V(\phi )=\beta ^2\int \hbox {d}k_{d1}|f_\mathrm{D}(k_{d1})|^2\frac{e^{2\pi k_{d1}}+1}{e^{2\pi k_{d1}}-1}. \end{aligned}$$
(50)

In order to calculate the concrete value of V, we need know \(f_\mathrm{D}(k_d,\tau )\),

$$\begin{aligned} \begin{aligned} f_\mathrm{D}(k_d,\tau )&=e^{-i\sqrt{a^2k^2_{d1}-k^2_{d2}-k^2_{d3}}\ \xi +ik_{d2}x_2+ik_{d3}x_3 -ik_{d1}a\tau }\\&\quad \times \,f_\mathrm{D}(k_{d1})g_\mathrm{D}(k_{d2})h_\mathrm{D}({k_{d3}}). \end{aligned} \end{aligned}$$
(51)

Moreover, we give some more assumptions, the propagation direction is \(-\xi \), the average values of \(k_{d2}\) and \(k_{d3}\) are zero. Bob’s local oscillator mode function is a Gaussian and reaches the maximum around the frequency \(k_{do}\) with respect to his proper time, \(\tau \). Then it is suitable to make the approximation,

$$\begin{aligned} |f_\mathrm{D}(k_{d1})|^2\approx \delta (k_{d1}-k_{do}/a). \end{aligned}$$
(52)

Ultimately, the variance of the signal mode is,

$$\begin{aligned} \langle \Delta X_\mathrm{S}(0)^2\rangle =V/\beta ^2=\frac{e^{2\pi k_{do}/a}+1}{e^{2\pi k_{do}/a}-1}. \end{aligned}$$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Shi, R. & Guo, Y. Squeezed-state quantum key distribution with a Rindler observer. Quantum Inf Process 17, 47 (2018). https://doi.org/10.1007/s11128-018-1821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1821-1

Keywords

Navigation