Abstract
A way of constructing special entangled basis with fixed Schmidt number 2 (SEB2) in \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{4k}(k\in z^+,3\not \mid k)\) is proposed, and the conditions mutually unbiased SEB2s (MUSEB2s) satisfy are discussed. In addition, a very easy way of constructing MUSEB2s in \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{4k}(k=2^l)\) is presented. We first establish the concrete construction of SEB2 and MUSEB2s in \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{4}\) and \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{8}\), respectively, and then generalize them into \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{4k}(k\in z^+,3\not \mid k)\) and display the condition that MUSEB2s satisfy; we also give general form of two MUSEB2s as examples in \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{4k}(k=2^l)\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ivanovi, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241–3245 (1981)
Durt, T., Englert, B.-G., Bengtesson, I., Zyczkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535 (2010)
Nikolopoulos, G.M., Alber, G.: Security bound of two-basis quantum-key-distribution protocols using qudits. Phys. Rev. A 72, 032320 (2005)
Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M.J., Konrad, T., Petruccione, F., Lutkenhaus, N., Forbes, A.: High-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)
Paw lowski, M., Zukowski, M.: Optimal bounds for parity-oblivious random access codes. Phys. Rev. A 81, 042326 (2010)
Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363 (1989)
Fernnadez-Parez, A., Klimov, A.B., Saavedra, C.: Quantum process reconstruction based on mutually unbiased basis. Phys. Rev. A 83, 052332 (2011)
McNulty, D., Weigert, S.: The limited role of mutually unbiased product bases in dimension 6. J. Phys. A Math. Theor. 45, 102001-1–102001-6 (2012)
Bennett, C.H., Divincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385–5388 (1999)
Bravyi, S., Smolin, J.A.: Unextendible maximally entangled bases. Phys. Rev. A 84, 042306-1–042306-3 (2011)
Chen, B., Fei, S.M.: Unextendible maximally entangled bases and mutually unbiased bases. Phys. Rev. A 88, 034301-1–034301-4 (2013)
Nan, H., Tao, Y.H., Li, L.S., Zhang, J.: Unextendible maximally entangled bases and mutually unbiased bases in \({\mathbb{C}}^d \otimes {\mathbb{C}}^{d^{\prime }}\). Int. J. Theor. Phys. 54, 927–932 (2015)
Nizamidin, H., Ma, T., Fei, S.M.: A note on mutually unbiased unextendible maximally entangled baes in \({\mathbb{C}}^2\otimes {\mathbb{C}}^3\). Int. J. Theor. Phys. 54, 326–333 (2015)
Luo, L.Z., Li, X.Y., Tao, Y.H.: Two types of maximally entangled bases and their mutually unbiased property in \({\mathbb{C}}^d \otimes {\mathbb{C}}^{d^{\prime }}\). Int. J. Theor. Phys. 55, 5069–5076 (2016)
Tao, Y.H., Nan, H., Zhang, J., Fei, S.M.: Mutually unbiased maximally entangled bases in \({\mathbb{C}}^d \otimes {\mathbb{C}}^{kd}\). Quantum Inf. Process. 14, 2635–2644 (2015)
Zhang, J., Tao, Y.H., Nan, H., Fei, S.M.: Construction of mutually unbiased bases in \({\mathbb{C}}^d \otimes {\mathbb{C}}^{2^ld^{\prime }}\). Quantum Inf. Process. 14, 2291–2300 (2015)
Zhang, J., Tao, Y.H., Nan, H., Fei, S.M.: Mutually unbiasedness between maximally entangled bases and unextendible maximally entangled systems in \({\mathbb{C}}^2\otimes {\mathbb{C}}^{2^k}\). Int. J. Theor. Phys. 55, 886–891 (2016)
Nan, H., Tao, Y.H., Wang, T.J., Zhang, J.: Mutually unbiased maximally entangled bases for the bipartite system in \({\mathbb{C}}^d \otimes {\mathbb{C}}^{d^k}\). Int. J. Theor. Phys. 55, 4324–4330 (2015)
Guo, Y., Li, X.L., Du, S.P., Wu, S.J.: Entangled bases with fixed Schmidt number. J. Phys. A: Math. Theor. 48, 245301 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by Natural Science Foundation of China under Numbers 11361065, 11761073.
Rights and permissions
About this article
Cite this article
Han, YF., Zhang, GJ., Yong, XL. et al. Mutually unbiased special entangled bases with Schmidt number 2 in \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{4k}\). Quantum Inf Process 17, 58 (2018). https://doi.org/10.1007/s11128-018-1824-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1824-y