Skip to main content
Log in

Heralded noiseless amplification for single-photon entangled state with polarization feature

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Wang, M.Y., Yan, F.L.: Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities. Quantum Inf. Process. 15, 3383 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Li, T.C., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61, 163 (2016)

    Article  Google Scholar 

  5. Ai, Q.: Toward quantum teleporting living objects. Sci. Bull. 61, 110 (2016)

    Article  Google Scholar 

  6. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  8. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  9. Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secret direct communication. Sci. Bull. 62, 1519 (2017)

    Article  Google Scholar 

  10. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cao, D.Y., Liu, B.H., Wang, Z., Huang, Y.F., Li, C.F., Guo, G.C.: Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bull. 60, 1128 (2015)

    Article  Google Scholar 

  12. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025 (2017)

    Article  Google Scholar 

  13. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)

    Article  Google Scholar 

  14. Tan, X.Q., Zhang, X.Q.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15, 2137 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Guerra, A.G.D.H., Rios, F.F.S., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quantum Inf. Process. 15, 4747 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Huang, W., Su, Q., Xu, B.J., Liu, B., Fan, F., Jia, H.Y., Yang, Y.H.: Improved multiparty quantum key agreement in travelling mode. Sci. China Phys. Mech. Astron. 59, 120311 (2016)

    Article  Google Scholar 

  17. Ye, T.Y.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 58, 040301 (2015)

    Article  Google Scholar 

  18. Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58, 060301 (2015)

    Article  Google Scholar 

  19. Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  20. Monteiro, F., Caprara Vivoli, V., Guerreiro, T., Martin, A., Bancal, J.D., Zbinden, H., Thew, R.T., Sangouard, N.: Revealing genuine optical-path entanglement. Phys. Rev. Lett. 114, 170504 (2015)

    Article  ADS  Google Scholar 

  21. Ho, M., Morin, O., Bancal, J.D., Gisin, N., Sangouard, N., Laurat, J.: Witnessing single-photon entanglement with local homodyne measurements: analytical bounds and robustness to losses. New J. Phys. 16, 130305 (2014)

    Google Scholar 

  22. Duan, L.M., Lukin, M.D., Cirac, J.T., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  23. Salart, D., Landry, O., Sangouard, N., Gisin, N., Herrmann, H., Sanguinetti, B., Simon, C., Sohler, W., Thew, R.T., Thomas, A., Zbinden, H.: Purification of single-photon entanglement. Phys. Rev. Lett. 104, 180504 (2010)

    Article  ADS  Google Scholar 

  24. Guerreiro, T., Monteiro, F., Martin, A., et al.: Demonstration of Einstein–Podolsky–Rosen steering using single-photon path entanglement and displacement-based detection. Phys. Rev. Lett. 117, 070404 (2016)

    Article  ADS  Google Scholar 

  25. Ralph, T. C., Lund, A. P.: Quantum communication measurement and computing. In: lvovsky, A. (ed.) Proceedings of the 9th International Conference, pp. 155–160. AIP, New York (2009)

  26. Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)

    Article  ADS  Google Scholar 

  27. Xiang, G.Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photonics 4, 316 (2010)

    Article  Google Scholar 

  28. Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304(R) (2011)

    Article  ADS  Google Scholar 

  29. Pitkanen, D., Ma, X., Wickert, R., van Loock, P., Lütkenhaus, N.: Efficient heralding of photonic qubits with applications to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011)

    Article  ADS  Google Scholar 

  30. Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)

    Article  ADS  Google Scholar 

  31. Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23 (2013)

    Article  Google Scholar 

  32. Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplification. Phys. Rev. A 86, 034302 (2012)

    Article  ADS  Google Scholar 

  33. Sheng, Y.B., Ou-Yang, Y., Zhou, L., Wang, L.: Protecting single-photon multi-mode W state from photon loss. Quantum Inf. Process. 13, 1595 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)

    Article  ADS  Google Scholar 

  35. Wang, T.J., Wang, C.: High-efficient entanglement distillation from photon loss and decoherence. Opt. Express 23, 31550 (2015)

    Article  ADS  Google Scholar 

  36. McMahon, N.A., Lund, A.P., Ralph, T.C.: Optimal architecture for a nondeterministic noiseless linear amplifier. Phys. Rev. A 89, 023846 (2014)

    Article  ADS  Google Scholar 

  37. Zhang, S.L., Dong, Y.L., Zou, X.B., Shi, B.S., Guo, G.C.: Continuous-variable-entanglement distillation with photon addition. Phys. Rev. A 88, 032324 (2013)

    Article  ADS  Google Scholar 

  38. Min\(\acute{a}\breve{r}\), J., de Riedmatten, H., Sangouard, N.: Quantum repeaters based on heralded qubit amplifiers. Phys. Rev. A 85, 032313 (2012)

  39. Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)

    Article  ADS  Google Scholar 

  40. Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Protecting single-photon entanglement with imperfect single-photon source. Quantum Inf. Process. 14, 635 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Linear-optical qubit amplification with spontaneous parametric down-conversion source. Laser Phys. 26, 015204 (2016)

    Article  ADS  Google Scholar 

  42. Zhou, L., Ou-Yang, Y., Wang, L., Sheng, Y.B.: Protecting single-photon entanglement with practical entanglement source. Quantum Inf. Process. 16, 151 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Feng, Z.F., Ou-Yang, Y., Zhou, L., Sheng, Y.B.: Distillation of arbitrary single-photon entanglement assisted with polarized Bell states. Quantum Inf. Process. 14, 3693 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Feng, Z.F., Ou-Yang, Y., Zhou, L., Sheng, Y.B.: Entanglement assisted single-photon W state amplification. Opt. Commun. 340, 80 (2015)

    Article  ADS  Google Scholar 

  45. Meyer-Scott, E., Bula, M., Bartkiewicz, K., C̆rnoch, A., Soubusta, J., Jennewein, T., Lemr, K.: Entanglement-based linear-optical qubit amplifier. Phys. Rev. A 88, 012327 (2013)

    Article  ADS  Google Scholar 

  46. Bruno, N., Pini, V., Martin, A., Verma, V.B., Nam, S.W., Mirin, R., Lita, A., Marsili, F., Korzh, B., Bussieres, F., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.: Heralded amplification of photonic qubits. Opt. Express 24, 125 (2016)

    Article  ADS  Google Scholar 

  47. Monteiro, F., Verbanis, E., Vivoli Caprara, V., Martin, A., Gisin, N., Zbinden, H., Thew, R.T.: Heralded amplification of path entangled quantum states. Quantum Sci. Technol. 2, 024008 (2017)

    Article  ADS  Google Scholar 

  48. Bennett, C. H., Brassard, G.: In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175–179

  49. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  50. Lita, A.E., Miller, A.J., Nam, S.W.: Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11474168, 61401222, and 11747161, the Natural Science Foundation of Jiangsu Province under Grant No. BK20151502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zhou.

Appendix

Appendix

1.1 Amplification for single-photon two-mode entangled state

The schematic drawing of the amplification protocol is shown in Fig. 1. Due to the photon transmission loss, the single-photon two-mode entangled state degrades to a mixed state of

$$\begin{aligned} \rho _\mathrm{in}=\eta |\Phi \rangle _{AB}\langle \Phi |+(1-\eta )|vac\rangle \langle vac|. \end{aligned}$$
(19)

Here, \(|\Phi \rangle _{AB}\) represents a single-photon two-mode entangled state, while the single-photon qubit has an arbitrary polarization feature. \(|\Phi \rangle _{AB}\) can be written as

$$\begin{aligned} |\Phi \rangle _{AB}=\frac{1}{\sqrt{2}}(\alpha |H0\rangle _{a_{1}b_{1}}+\beta |V0\rangle _{a_{1}b_{1}}+\alpha |0H\rangle _{a_{1}b_{1}}+\beta |0V\rangle _{a_{1}b_{1}}). \end{aligned}$$
(20)

Here, \(\alpha \) and \(\beta \) meet \(|\alpha |^{2}+|\beta |^{2}=1\).

We first consider that the single-photon qubit does not lose. By passing the single photon through a polarization beam splitter (PBS), which can fully transmit the photon in \(|H\rangle \) and reflect the photon in \(|V\rangle \), \(|\Phi \rangle _{AB}\) evolves to

$$\begin{aligned} |\Phi _{1}\rangle= & {} \frac{1}{\sqrt{2}}\left( \alpha |H0\rangle _{a_{2}b_{2}}+\beta |V0\rangle _{a_{3}b_{3}}+\alpha |0H\rangle _{a_{2}b_{2}}+\beta |0V\rangle _{a_{3}b_{3}}\right) \nonumber \\= & {} \alpha |\Phi ^{+}\rangle _{a_{2}b_{2}}+\beta |\Phi ^{-}\rangle _{a_{3}b_{3}}, \end{aligned}$$
(21)

where

$$\begin{aligned} |\Phi ^{+}\rangle _{a_{2}b_{2}}= & {} \frac{1}{\sqrt{2}}\left( |H0\rangle _{a_{2}b_{2}}+|0H\rangle _{a_{2}b_{2}}\right) ,\nonumber \\ |\Phi ^{-}\rangle _{a_{3}b_{3}}= & {} \frac{1}{\sqrt{2}}\left( |V0\rangle _{a_{3}b_{3}}+|0V\rangle _{a_{3}b_{3}}\right) . \end{aligned}$$
(22)

Next, Alice and Bob make four single-photon sources \(S_{2}\sim S_{5}\) emit four auxiliary photons. The two auxiliary photons in \(a_{4}\) and \(b_{4}\) modes are in \(|H\rangle \), while the other two in \(a_{7}\) and \(b_{7}\) modes are in \(|V\rangle \). It is noticed that single photons in \(a_{2}a_{4}b_{2}b_{4}\) spatial modes should be indistinguishable, while the photons in \(a_{3}a_{7}b_{3}b_{7}\) should be indistinguishable. Then, by making each of auxiliary photons pass through a variable beam splitter (VBS) with the transmittance of t, Alice and Bob can generate two auxiliary SPE states as

$$\begin{aligned} |\phi _{1}\rangle= & {} (\sqrt{1-t}|0H\rangle _{a_{5}a_{6}}+\sqrt{t}|H0\rangle _{a_{5}a_{6}})\otimes (\sqrt{1-t}|V0\rangle _{a_{8}a_{9}}+\sqrt{t}|0V\rangle _{a_{8}a_{9}}), \qquad \end{aligned}$$
(23)
$$\begin{aligned} |\phi _{2}\rangle= & {} (\sqrt{1-t}|0H\rangle _{b_{5}b_{6}}+\sqrt{t}|H0\rangle _{b_{5}b_{6}})\otimes (\sqrt{1-t}|V0\rangle _{b_{8}b_{9}}+\sqrt{t}|0V\rangle _{b_{8}b_{9}}).\qquad \end{aligned}$$
(24)

In this way, \(|\Phi _{1}\rangle \) combined with the auxiliary photon states can be written as

$$\begin{aligned} |\Phi _{2}\rangle= & {} (\alpha |\Phi ^{+}\rangle _{a_{2}b_{2}}+\beta |\Phi ^{-}\rangle _{a_{3}b_{3}})\otimes |\phi _{1}\rangle \otimes |\phi _{2}\rangle \nonumber \\= & {} \alpha |\Phi ^{+}\rangle _{a_{2}b_{2}}\otimes |\phi _{1}\rangle \otimes |\phi _{2}\rangle +\beta |\Phi ^{-}\rangle _{a_{3}b_{3}}\otimes |\phi _{1}\rangle \otimes |\phi _{2}\rangle \nonumber \\= & {} \frac{1}{\sqrt{2}}\alpha [(1-t)|H00H0H\rangle +\sqrt{t(1-t)}|H00HH0\rangle +\sqrt{t(1-t)}|H0H00H\rangle \nonumber \\&+\,t|H0H0H0\rangle +(1-t)|0H0H0H\rangle +\sqrt{t(1-t)}|0H0HH0\rangle \nonumber \\&+\,\sqrt{t(1-t)}|0HH00H\rangle +\,t|0HH0H0\rangle ]_{a_{2}b_{2}a_{5}a_{6}b_{5}b_{6}}]\nonumber \\& \otimes [(1-t)|V0V0\rangle +\sqrt{t(1-t)}|V00V\rangle \nonumber \\&+\,\sqrt{t(1-t)}|0VV0\rangle +t|0V0V\rangle ]_{a_{8}a_{9}b_{8}b_{9}} +\frac{1}{\sqrt{2}}\beta [(1-t)|V0V0V0\rangle \nonumber \\&+\,\sqrt{t(1-t)}|V0V00V\rangle +\sqrt{t(1-t)}|V00VV0\rangle +t|V00V0V\rangle \nonumber \\&+\,(1-t)|0VV0V0\rangle +\sqrt{t(1-t)}|0VV00V\rangle \nonumber \\&+\,\sqrt{t(1-t)}|0V0VV0\rangle +t|0V0V0V\rangle ]_{a_{3}b_{3}a_{8}a_{9}b_{8}b_{9}}\otimes [(1-t)|0H0H\rangle \nonumber \\&+\,\sqrt{t(1-t)}|0HH0\rangle +\sqrt{t(1-t)}|H00H\rangle +t|H0H0\rangle ]_{a_{5}a_{6}b_{5}b_{6}}. \end{aligned}$$
(25)

Then, Alice and Bob make the photons in the \(a_{2}a_{6}\), \(a_{3}a_{8}\), \(b_{2}b_{6}\), and \(b_{3}b_{8}\) modes pass through four BSs, respectively, which

$$\begin{aligned} |1\rangle _{a_{2}}= & {} \frac{1}{\sqrt{2}}(|1\rangle _{d_{1}}+|1\rangle _{d_{2}}),\qquad |1\rangle _{a_{6}}=\frac{1}{\sqrt{2}}(|1\rangle _{d_{1}}-|1\rangle _{d_{2}}),\nonumber \\ |1\rangle _{a_{3}}= & {} \frac{1}{\sqrt{2}}(|1\rangle _{d_{3}}+|1\rangle _{d_{4}}),\qquad |1\rangle _{a_{8}}=\frac{1}{\sqrt{2}}(|1\rangle _{d_{3}}-|1\rangle _{d_{4}}).\nonumber \\ |1\rangle _{b_{2}}= & {} \frac{1}{\sqrt{2}}(|1\rangle _{d_{5}}+|1\rangle _{d_{6}}),\qquad |1\rangle _{b_{6}}=\frac{1}{\sqrt{2}}(|1\rangle _{d_{5}}-|1\rangle _{d_{6}}),\nonumber \\ |1\rangle _{b_{3}}= & {} \frac{1}{\sqrt{2}}(|1\rangle _{d_{7}}+|1\rangle _{d_{8}}),\qquad |1\rangle _{b_{8}}=\frac{1}{\sqrt{2}}(|1\rangle _{d_{7}}-|1\rangle _{d_{8}}). \end{aligned}$$
(26)

It can be found that if both the two input spatial modes of a BS contain a photon, after passing through the BS, the two photons will be both in either one of the two output modes. It is also called the Hong-Ou-Mandel (HOM) bunching effect. On the other hand, if only an input spatial mode of a BS contains a photon, the output photon will be in either of the two output modes. Alice and Bob select the cases where only one of the two output modes of each BS contains exactly one photon. After the BSs, the selected state in Eq. (25) will evolve to

$$\begin{aligned} |\Phi _{3}\rangle= & {} \frac{\alpha \sqrt{t(1-t)}}{2\sqrt{2}}[(|H\rangle _{d_{1}}+|H\rangle _{d_{2}})(|H\rangle _{d_{5}}-|H\rangle _{d_{6}})|H0\rangle _{a_{5}b_{5}}\nonumber \\&+\,(|H\rangle _{d_{1}}-|H\rangle _{d_{2}})(|H\rangle _{d_{5}}+|H\rangle _{d_{6}})|0H\rangle _{a_{5}b_{5}}]\nonumber \\&\otimes \frac{1-t}{2}(|V\rangle _{d_{3}}-|V\rangle _{d_{4}})(|V\rangle _{d_{7}}-|V\rangle _{d_{8}})\nonumber \\&+\,\frac{\beta \sqrt{t(1-t)}}{2\sqrt{2}}[(|V\rangle _{d_{3}}\nonumber \\&+\,|V\rangle _{d_{4}})(|V\rangle _{d_{7}}-|V\rangle _{d_{8}})|V0\rangle _{a_{9}b_{9}} +(|V\rangle _{d_{3}}-|V\rangle _{d_{4}})(|V\rangle _{d_{7}}+|V\rangle _{d_{8}})|0V\rangle _{a_{9}b_{9}}]\nonumber \\&\otimes \frac{1-t}{2}(|H\rangle _{d_{1}}-|H\rangle _{d_{2}})(|H\rangle _{d_{5}}-|H\rangle _{d_{6}}). \end{aligned}$$
(27)

Next, the photons in the eight output modes \(d_{i}\) \((i=1, 2, \ldots , 8)\) are detected by the single-photon detectors \(D_{i}\) \((i=1, 2, \ldots , 8)\), respectively. There are sixteen detection results corresponding to the successful cases of our protocol, which are shown in Table 1.

We take the detection result of \(D_{1}D_{3}D_{5}D_{7}\) for an example. From Eq. (27), if \(D_{1}D_{3}D_{5}D_{7}\) each registers a single photon, the parties will obtain the state as

$$\begin{aligned} |\Phi _{4}\rangle =\frac{\alpha }{\sqrt{2}}(|H0\rangle _{a_{5}b_{5}}+|0H\rangle _{a_{5}b_{5}}) +\frac{\beta }{\sqrt{2}}(|V0\rangle _{a_{9}b_{9}}+|0V\rangle _{a_{9}b_{9}}), \end{aligned}$$
(28)

with the probability of \(\frac{ t(1-t)^{3}}{16}\).

If the parties obtain one of the other fifteen detection results shown in Table 1, they can also finally obtain \(|\Phi _{4}\rangle \) with the help of the phase-flip operation. Therefore, under the case that the single photon does not lose, the success probability of our protocol is

$$\begin{aligned} P_{1}=\eta \frac{ t(1-t)^{3}}{16}\times 16=\eta t(1-t)^{3}. \end{aligned}$$
(29)

Finally, the parties make the photons in \(a_{5}a_{9}\) and \(b_{5}b_{9}\) modes enter PBS\(_{2}\) and PBS\(_{4}\), respectively. After the PBSs, they can obtain

$$\begin{aligned} |\Phi _{5}\rangle =\frac{1}{\sqrt{2}}(\alpha |H0\rangle _{a_{10}b_{10}}+\alpha |0H\rangle _{a_{10}b_{10}}+\beta |V0\rangle _{a_{10}b_{10}}+\beta |0V\rangle _{a_{10}b_{10}}) =|\Phi \rangle _{AB}.\nonumber \\ \end{aligned}$$
(30)

On the other hand, under the case that the photon is lost with the probability of \(1-\eta \). Combined with the four auxiliary single photons, the whole photon state can be written as

$$\begin{aligned} |vac\rangle \otimes |\phi _{1}\rangle \otimes |\phi _{2}\rangle= & {} [(\sqrt{1-t}|0H\rangle _{a_{5}a_{6}}+\sqrt{t}|H0\rangle _{a_{5}a_{6}}) \otimes (\sqrt{1-t}|0H\rangle _{b_{5}b_{6}}\nonumber \\&\quad +\,\sqrt{t}|H0\rangle _{b_{5}b_{6}})]\nonumber \\&\otimes [(\sqrt{1-t}|V0\rangle _{a_{8}a_{9}}+\sqrt{t}|0V\rangle _{a_{8}a_{9}}) \otimes (\sqrt{1-t}|V0\rangle _{b_{8}b_{9}}\nonumber \\&\quad +\,\sqrt{t}|0V\rangle _{b_{8}b_{9}})]\nonumber \\= & {} [(1-t)|0H0H\rangle +\sqrt{t(1-t)}|0HH0\rangle +\sqrt{t(1-t)}|H00H\rangle \nonumber \\&\quad +\,t|H0H0\rangle ]_{a_{5}a_{6}b_{5}b_{6}}\nonumber \\&\otimes [(1-t)|V0V0\rangle +\sqrt{t(1-t)}|V00V\rangle +\sqrt{t(1-t)}|0VV0\rangle \nonumber \\&\quad +\,t|0V0V\rangle ]_{a_{8}a_{9}b_{8}b_{9}}. \end{aligned}$$
(31)

After making the photons in \(a_{2}a_{6}\), \(a_{3}a_{8}\), \(b_{2}b_{6}\), and \(b_{3}b_{8}\) modes pass through four BSs, respectively, and selecting one of the sixteen detection results shown in Table 1, the state in Eq. (31) will finally collapse to

$$\begin{aligned} |\Phi _{6}\rangle =(1-t)^{2}|vac\rangle , \end{aligned}$$
(32)

with the probability of \(\frac{(1-t)^{4}}{16}\). In this way, the total success probability of our protocol corresponding to the initial vacuum state is

$$\begin{aligned} P_{2}=(1-\eta )\frac{(1-t)^{4}}{16}\times 16=(1-\eta )(1-t)^{4}. \end{aligned}$$
(33)

Therefore, for the initial mixed state \(\rho _\mathrm{in}\), the total success probability of our protocol is

$$\begin{aligned} P=P_{1}+P_{2}=\eta t(1-t)^{3}+(1-\eta )(1-t)^{4}. \end{aligned}$$
(34)

After choosing the successful cases, the parties will finally obtain a new mixed state as

$$\begin{aligned} \rho _\mathrm{out}=\eta '|\Phi \rangle _{AB}\langle \Phi |+(1-\eta ')|vac\rangle \langle vac|. \end{aligned}$$
(35)

Here,

$$\begin{aligned} \eta '=\frac{\eta t(1-t)^{3}}{\eta t(1-t)^{3}+(1-\eta )(1-t)^{4}}=\frac{\eta t}{\eta t+(1-\eta )(1-t)}. \end{aligned}$$
(36)

We define the amplification factor G as \(G=\frac{\eta '}{\eta }\). In this way, in our protocol, the amplification factor G is

$$\begin{aligned} G=\frac{\eta '}{\eta }=\frac{t}{\eta t+(1-\eta )(1-t)}. \end{aligned}$$
(37)

1.2 Amplification for single-photon three-mode W state

The schematic drawing of the amplification protocol is shown in Fig. 2. The initial input mixed state has the form of

$$\begin{aligned} \rho _{\mathrm{in}W}=\eta |\Psi \rangle _{ABC}\langle \Psi |+(1-\eta )|vac\rangle \langle vac|. \end{aligned}$$
(38)

Here, \(|\Psi \rangle _{ABC}\) can be written as

$$\begin{aligned} |\Psi \rangle _{ABC}= & {} \frac{1}{\sqrt{3}}(\alpha |H00\rangle +\beta |V00\rangle +\alpha |0H0\rangle +\beta |0V0\rangle +\alpha |00H\rangle +\beta |00V\rangle )_{a_{1}b_{1}c_{1}}.\nonumber \\ \end{aligned}$$
(39)

As shown in Fig. 2, we also first consider the case that the single photon does not lose. Alice, Bob, and Charlie make the photon in the \(a_{1}\), \(b_{1}\), and \(c_{1}\) modes pass through the PBS\(_{1}\), PBS\(_{3}\), and PBS\(_{5}\), respectively. After that, \(|\Psi \rangle _{ABC}\) will evolve to

$$\begin{aligned} |\Psi _{1}\rangle _{ABC}= & {} \frac{1}{\sqrt{3}}(\alpha |H00\rangle _{a_{2}b_{2}c_{2}}+\beta |V00\rangle _{a_{3}b_{3}c_{3}}+\alpha |0H0\rangle _{a_{2}b_{2}c_{2}}+\beta |0V0\rangle _{a_{3}b_{3}c_{3}}\nonumber \\&+\,\alpha |00H\rangle _{a_{2}b_{2}c_{2}}+\beta |00V\rangle _{a_{3}b_{3}c_{3}})\nonumber \\= & {} \alpha |\Psi _{1}^{+}\rangle _{a_{2}b_{2}c_{2}}+\beta |\Psi _{1}^{-}\rangle _{a_{3}b_{3}c_{3}}, \end{aligned}$$
(40)

where

$$\begin{aligned} |\Psi _{1}^{+}\rangle _{a_{2}b_{2}c_{2}}= & {} \frac{1}{\sqrt{3}}(|H00\rangle +|0H0\rangle +|00H\rangle )_{a_{2}b_{2}c_{2}},\nonumber \\ |\Psi _{1}^{-}\rangle _{a_{3}b_{3}c_{3}}= & {} \frac{1}{\sqrt{3}}(|V00\rangle +|0V0\rangle +|00V\rangle )_{a_{3}b_{3}c_{3}}. \end{aligned}$$
(41)

For realizing the amplification, each of the three parties should prepare two auxiliary photons. The photons in \(a_{4}\), \(b_{4}\), and \(c_{4}\) modes are in \(|H\rangle \), while those in \(a_{7}\), \(b_{7}\), and \(c_{7}\) modes are in \(|V\rangle \). Similarly, all the photons in \(|H\rangle \) and all the photons in \(|V\rangle \) should be indistinguishable. Then, the three parties pass each of the auxiliary single photons through a VBS with the transmittance of t. In this way, \(|\Psi _{1}\rangle _{ABC}\) combined with the auxiliary photon states can be written as

$$\begin{aligned} |\Psi _{2}\rangle= & {} \frac{1}{\sqrt{3}}\alpha (|H00\rangle +|0H0\rangle +|00H\rangle )_{a_{2}b_{2}c_{2}} \otimes [(\sqrt{1-t}|0H\rangle +\sqrt{t}|H0\rangle )_{a_{5}a_{6}}\nonumber \\&\otimes (\sqrt{1-t}|0H\rangle +\sqrt{t}|H0\rangle )_{b_{5}b_{6}} \otimes (\sqrt{1-t}|0H\rangle +\sqrt{t}|H0\rangle )_{c_{5}c_{6}}]\nonumber \\&\otimes [(\sqrt{1-t}|V0\rangle +\sqrt{t}|0V\rangle )_{a_{8}a_{9}} \otimes (\sqrt{1-t}|V0\rangle +\sqrt{t}|0V\rangle )_{b_{8}b_{9}}\nonumber \\&\otimes (\sqrt{1-t}|V0\rangle +\sqrt{t}|0V\rangle )_{c_{8}c_{9}}] +\frac{1}{\sqrt{3}}\beta (|V00\rangle +|0V0\rangle +|00V\rangle )_{a_{3}b_{3}c_{3}}\nonumber \\&\otimes [(\sqrt{1-t}|0H\rangle +\sqrt{t}|H0\rangle )_{a_{5}a_{6}} \otimes (\sqrt{1-t}|0H\rangle +\sqrt{t}|H0\rangle )_{b_{5}b_{6}}\nonumber \\&\otimes (\sqrt{1-t}|0H\rangle +\sqrt{t}|H0\rangle )_{c_{5}c_{6}}]\nonumber \\&\otimes [(\sqrt{1-t}|V0\rangle +\sqrt{t}|0V\rangle )_{a_{8}a_{9}}\nonumber \\&\otimes (\sqrt{1-t}|V0\rangle +\sqrt{t}|0V\rangle )_{b_{8}b_{9}} \otimes (\sqrt{1-t}|V0\rangle +\sqrt{t}|0V\rangle )_{c_{8}c_{9}}]. \end{aligned}$$
(42)

After that, they make the photons in \(a_{2}a_{6}\), \(a_{3}a_{8}\), \(b_{2}b_{6}\), \(b_{3}b_{8}\), \(c_{2}c_{6}\), and \(c_{3}c_{8}\) modes enter BSs, respectively. Similar to the protocol in Sect. 2, the parties also select the items which make only one of the two output modes in each BS has exactly one photon. In this way, \(|\Psi _{2}\rangle \) will finally evolve to

$$\begin{aligned} |\Psi _{3}\rangle= & {} \frac{1}{8\sqrt{3}}\alpha (1-t)^{2}\sqrt{t(1-t)}(|V\rangle _{d_{3}}-|V\rangle _{d_{4}}) (|V\rangle _{d_{7}}-|V\rangle _{d_{8}}) (|V\rangle _{d_{11}}-|V\rangle _{d_{12}})\nonumber \\&\otimes [(|H\rangle _{d_{1}}+|H\rangle _{d_{2}})(|H\rangle _{d_{5}}-|H\rangle _{d_{6}})(|H\rangle _{d_{9}}-|H\rangle _{d_{10}}) |H00\rangle _{a_{5}b_{5}c_{5}}\nonumber \\&\quad +\,(|H\rangle _{d_{1}}-|H\rangle _{d_{2}})(|H\rangle _{d_{5}}+|H\rangle _{d_{6}}) (|H\rangle _{d_{9}}-|H\rangle _{d_{10}}) |0H0\rangle _{a_{5}b_{5}c_{5}}\nonumber \\&\quad +\,(|H\rangle _{d_{1}}-|H\rangle _{d_{2}})(|H\rangle _{d_{5}}-|H\rangle _{d_{6}}) (|H\rangle _{d_{9}}+|H\rangle _{d_{10}}) |00H\rangle _{a_{5}b_{5}c_{5}}]\nonumber \\&\quad +\,\frac{1}{8\sqrt{3}}\beta (1-t)^{2}\sqrt{t(1-t)}(|H\rangle _{d_{1}}-|H\rangle _{d_{2}}) (|H\rangle _{d_{5}}-|H\rangle _{d_{6}}) (|H\rangle _{d_{9}}-|H\rangle _{d_{10}})\nonumber \\&\otimes [(|V\rangle _{d_{3}}+|V\rangle _{d_{4}})(|V\rangle _{d_{7}}-|V\rangle _{d_{8}})(|V\rangle _{d_{11}}-|V\rangle _{d_{12}}) |V00\rangle _{a_{9}b_{9}c_{9}}\nonumber \\&\quad +\,(|V\rangle _{d_{3}}-|V\rangle _{d_{4}})(|V\rangle _{d_{7}}+|V\rangle _{d_{8}})(|V\rangle _{d_{11}}-|V\rangle _{d_{12}}) |0V0\rangle _{a_{9}b_{9}c_{9}}\nonumber \\&\quad +\,(|V\rangle _{d_{3}}-|V\rangle _{d_{4}})(|V\rangle _{d_{7}}-|V\rangle _{d_{8}})(|V\rangle _{d_{11}}+|V\rangle _{d_{12}}) |00V\rangle _{a_{9}b_{9}c_{9}}] \end{aligned}$$
(43)

with the probability of \(t(1-t)^{5}\).

Then, the photons in all the twelve output modes \(d_{i}\) \((i=1, 2, \ldots , 12)\) are detected by the single-photon detectors \(D_{i}\) \((i=1, 2, \ldots , 12)\), respectively. \(|\Psi _{3}\rangle \) will cause Alice to obtain \(D_{1}D_{3}\), \(D_{1}D_{4}\), \(D_{2}D_{3}\), or \(D_{2}D_{4}\) each registering a single photon, Bob obtain \(D_{5}D_{7}\), \(D_{5}D_{8}\), \(D_{6}D_{7}\), or \(D_{6}D_{8}\) each registering a single photon, and Charlie obtain \(D_{9}D_{11}\), \(D_{9}D_{12}\), \(D_{10}D_{11}\), or \(D_{10}D_{12}\) each registering a single photon. Therefore, there are sixty-four successful detection results in total.

Here, we take the detection result of \(D_{1}D_{3}D_{5}D_{7}D_{9}D_{11}\) each registering a single photon for example. Under this detection result, the state in Eq. (43) will evolve to

$$\begin{aligned} |\Psi _{4}\rangle _{ABC}=\frac{\alpha }{\sqrt{3}}(|H00\rangle +|0H0\rangle +|00H\rangle )_{a_{5}b_{5}c_{5}} +\frac{\beta }{\sqrt{3}}(|V00\rangle +|0V0\rangle +|00V\rangle )_{a_{9}b_{9}c_{9}}.\nonumber \\ \end{aligned}$$
(44)

If the parties obtain one of the other sixty-three successful detection results, they can finally obtain \(|\Psi _{4}\rangle _{ABC}\) by the phase-flip operation.

Finally, the parties make the photons in \(a_{5}a_{9}\), \(b_{5}b_{9}\), and \(c_{5}c_{9}\) modes enter PBS\(_{2}\), PBS\(_{4}\), and PBS\(_{6}\), respectively. After the PBSs, \(|\Psi _{4}\rangle _{ABC}\) will finally evolve to

$$\begin{aligned} |\Psi _{5}\rangle= & {} \frac{1}{\sqrt{3}}(\alpha |H00\rangle +\alpha |0H0\rangle +\alpha |00H\rangle +\beta |V00\rangle +\beta |0V0\rangle +\beta |00V\rangle )_{a_{10}b_{10}c_{10}}\nonumber \\= & {} \frac{1}{\sqrt{3}}(|\varphi 00\rangle +|0\varphi 0\rangle +|00\varphi \rangle )_{a_{10}b_{10}c_{10}}. \end{aligned}$$
(45)

Considering the single photon does not lose with the probability of \(\eta \), the success probability of our protocol can be written as

$$\begin{aligned} P_{1W}=\eta t(1-t)^{5}. \end{aligned}$$
(46)

Next, we deal with the case that the photon is lost with the probability of \(1-\eta \). Combined with the three auxiliary single photons in \(|H\rangle \) and the three auxiliary single photons in \(|V\rangle \), the whole photon state can be written as

$$\begin{aligned} |\Psi _{6}\rangle= & {} [(\sqrt{1-t}|0H\rangle +\sqrt{t}|H0\rangle )_{a_{5}a_{6}} \otimes (\sqrt{1-t}|0H\rangle +\sqrt{t}|H0\rangle )_{b_{5}b_{6}}\nonumber \\&\otimes (\sqrt{1-t}|0H\rangle +\sqrt{t}|H0\rangle )_{c_{5}c_{6}}] \otimes [(\sqrt{1-t}|V0\rangle +\sqrt{t}|0V\rangle )_{a_{8}a_{9}}\nonumber \\&\otimes (\sqrt{1-t}|V0\rangle +\sqrt{t}|0V\rangle )_{b_{8}b_{9}} \otimes (\sqrt{1-t}|V0\rangle +\sqrt{t}|0V\rangle )_{c_{8}c_{9}}]. \end{aligned}$$
(47)

After the whole above operation, only the item \(|0H0H0HV0V0V0\rangle _{a_{5}a_{6}b_{5}b_{6}c_{5}c_{6}a_{8}a_{9}b_{8}b_{9}c_{8}c_{9}}\) will make the three parties obtain one of the above sixty-four successful detection results. In this way, the state in Eq. (47) will collapse to

$$\begin{aligned} |\Psi _{7}\rangle =(1-t)^{3}|0H0H0HV0V0V0\rangle _{a_{5}a_{6}b_{5}b_{6}c_{5}c_{6}a_{8}a_{9}b_{8}b_{9}c_{8}c_{9}}, \end{aligned}$$
(48)

with the probability of \((1-t)^{6}\). After the BSs, the output photons are detected by the single-photon detectors, and the photon state in Eq. (48) will finally evolve to the vacuum state.

Based on above description, the total success probability of our protocol corresponding to the initial vacuum state is

$$\begin{aligned} P_{2W}=(1-\eta )(1-t)^{6}. \end{aligned}$$
(49)

Therefore, for the initial mixed state \(\rho _{\mathrm{in}W}\), the total success probability of our protocol is

$$\begin{aligned} P_{W}=P_{1W}+P_{2W}=\eta t(1-t)^{5}+(1-\eta )(1-t)^{6}. \end{aligned}$$
(50)

After choosing the success cases, the parties will finally obtain a new mixed state as

$$\begin{aligned} \rho _{\mathrm{out}W}=\eta '_{W}|\Psi \rangle _{ABC}\langle \Psi |+(1-\eta '_{W})|vac\rangle \langle vac|. \end{aligned}$$
(51)

Here,

$$\begin{aligned} \eta _{W}'=\frac{\eta t(1-t)^{5}}{\eta t(1-t)^{5}+(1-\eta )(1-t)^{6}}=\frac{\eta t}{\eta t+(1-\eta )(1-t)}. \end{aligned}$$
(52)

We also define the amplification factor \(G_{W}\) as \(G_{W}=\frac{\eta '}{\eta }\). In this way, in our protocol, the amplification factor G is

$$\begin{aligned} G_{W}=\frac{\eta _{W}'}{\eta }=\frac{t}{\eta t+(1-\eta )(1-t)}, \end{aligned}$$
(53)

which equals to the amplification factor for the single-photon two-mode entangled state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DD., Jin, YY., Qin, SX. et al. Heralded noiseless amplification for single-photon entangled state with polarization feature. Quantum Inf Process 17, 56 (2018). https://doi.org/10.1007/s11128-018-1828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1828-7

Keywords

Navigation