Abstract
The main threats for the well-known Bennett–Brassard 1984 (BB84) practical quantum key distribution (QKD) systems are that its encoding is inaccurate and measurement device may be vulnerable to particular attacks. Thus, a general physical model or security proof to tackle these loopholes simultaneously and quantitatively is highly desired. Here we give a framework on the security of BB84 when imperfect qubit encoding and vulnerability of measurement device are both considered. In our analysis, the potential attacks to measurement device are generalized by the recently proposed weak randomness model which assumes the input random numbers are partially biased depending on a hidden variable planted by an eavesdropper. And the inevitable encoding inaccuracy is also introduced here. From a fundamental view, our work reveals the potential information leakage due to encoding inaccuracy and weak randomness input. For applications, our result can be viewed as a useful tool to quantitatively evaluate the security of a practical QKD system.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dus̆ek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)
Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8, 595 (2014)
Bennett, C.H.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computer System and Signal Processing, IEEE, 1984 p. 175 (1984)
Mayers, D.: Unconditional security in quantum cryptography. J. ACM (JACM) 48, 351 (2001)
Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)
Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)
Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005)
Li, H.-W., Yin, Z.-Q., Wang, S., Qian, Y.-J., Chen, W., Guo, G.-C., Han, Z.-F.: Randomness determines practical security of BB84 quantum key distribution. Scientific Reports 5 (2015)
Qi, B., Fung, C.-H.F., Lo, H.-K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73 (2007)
Li, H.-W., Wang, S., Huang, J.-Z., Chen, W., Yin, Z.-Q., Li, F.-Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.-C., et al.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84, 062308 (2011)
Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)
Jain, N., Anisimova, E., Khan, I., Makarov, V., Marquardt, C., Leuchs, G.: Trojan-horse attacks threaten the security of practical quantum cryptography. New J. Phys. 16, 123030 (2014)
Lucamarini, M., Choi, I., Ward, M.B., Dynes, J.F., Yuan, Z., Shields, A.J.: Practical security bounds against the Trojan-horse attack in quantum key distribution. Phys. Rev. X 5, 031030 (2015)
Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686 (2010)
Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J D 41, 599 (2007)
Koashi, M.: Simple security proof of quantum key distribution based on complementarity. New J. Phys. 11, 045018 (2009)
Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)
Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)
Koashi, M., Preskill, J.: Secure quantum key distribution with an uncharacterized source. Phys. Rev. Lett. 90, 057902 (2003)
Gottesman, D., Lo, H.-K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)
Tamaki, K., Lo, H.-K., Fung, C.-H.F., Qi, B.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 042307 (2012)
Barnett, S.M., Huttner, B., Phoenix, S.J.: Eavesdropping strategies and rejected-data protocols in quantum cryptography. J. Mod. Opt. 40, 2501 (1993)
Barnett, S.M., Phoenix, S.J.: Information-theoretic limits to quantum cryptography. Phys. Rev. A 48, R5 (1993)
Tamaki, K., Curty, M., Kato, G., Lo, H.-K., Azuma, K.: Loss-tolerant quantum cryptography with imperfect sources. Phys. Rev. A 90, 052314 (2014)
Yin, Z.-Q., Fung, C.-H.F., Ma, X., Zhang, C.-M., Li, H.-W., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources. Phys. Rev. A 90, 052319 (2014)
Lo, H.-K., Chau, H.-F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133 (2005)
Koashi, M.: Complementarity, distillable secret key, and distillable entanglement. arXiv preprint arXiv:0704.3661 (2007)
Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)
Mizutani, A., Curty, M., Lim, C.C.W., Imoto, N., Tamaki, K.: Finite-key security analysis of quantum key distribution with imperfect light sources. New J. Phys. 17, 093011 (2015)
Acknowledgements
This work was supported by Foundation of Science and Technology on Communication Security Laboratory (Grant No. 6142103040105), Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (XDB01030100, XDB01030300), National Key Research and Development Program of China (2016YFA0302600), and National Natural Science Foundation of China (NSFC) (61475148, 61575183).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhao, LY., Yin, ZQ., Li, HW. et al. Security of BB84 with weak randomness and imperfect qubit encoding. Quantum Inf Process 17, 55 (2018). https://doi.org/10.1007/s11128-018-1830-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1830-0