Skip to main content
Log in

Belavkin filter for mixture of quadrature and photon counting process with some control techniques

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Belavkin filter for the H-P Schrödinger equation is derived when the measurement process consists of a mixture of quantum Brownian motions and conservation/Poisson process. Higher-order powers of the measurement noise differentials appear in the Belavkin dynamics. For simulation, we use a second-order truncation. Control of the Belavkin filtered state by infinitesimal unitary operators is achieved in order to reduce the noise effects in the Belavkin filter equation. This is carried out along the lines of Luc Bouten. Various optimization criteria for control are described like state tracking and Lindblad noise removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gough, J., Kostler, C.: Quantum filtering in coherent states. Commun. Stoch. Anal. 4(4), 505–521 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Jazwinski, A.: Stochastic Process and Filtering Theory. Academic Press, Newyork (1970)

    MATH  Google Scholar 

  3. Davis, M.H.A., Marcus, S.I.: An introduction to nonlinear filtering. In: Stochastic Systems: The Mathematics of Filtering and Identification and Applications. NATO Advanced Study Institutes Series (Series C - Mathematical and Physical Sciences), vol. 78, pp. 53–75. Springer, Dordrecht (1981)

  4. Kushner, H.J.: Jump-diffusion approximations for ordinary differential equations with wide-band random right hand sides. SIAM J. Control Optim. 17, 729–744 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kushner, H.J.: Diffusion approximations to output processes of nonlinear systems with wide-band inputs and applications. IEEE Trans. Inf. Theory 26, 715–725 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Zakai, M.: On the optimal filtering of diffusion processes. Z. Wahrsch. th. verw. Geb. 11, 230–243 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Applebaum, D.: Levy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  8. Belavkin, V.P.: Quantum filtering of Markov signals with white quantum noise. Radiotechnika i Electronika 25, 1445–1453 (1980)

    ADS  MathSciNet  Google Scholar 

  9. Belavkin, V.P.: Quantum continual measurements and a posteriori collapse on CCR. Commun. Math. Phys. 146, 611–635 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Belavkin, V.P.: Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. 42, 171–201 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Belavkin, V.P.: Quantum stochastic positive evolutions: characterization, construction, dilationcalculus and quantum nonlinear filtering. Commun. Math. Phys. 184, 533–566 (1997)

    Article  ADS  MATH  Google Scholar 

  12. Belavkin, V.P.: Quantum quasi-Markov processes in eventum mechanics dynamics, observation, filtering and control. Quantum Inf. Process. 12, 1539–1626 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Gough, J., Belavkin, V.P.: Quantum control and information processing. Quantum Inf. Process. 12, 1397–1415 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bouten, L.: Filtering and control in quantum optics. quant-ph/0410080 (2004)

  15. Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Birkhauser, Berlin (1992)

    Book  MATH  Google Scholar 

  16. Hudson, R.L., Parhasarathy, K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301–323 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Garg, N., Parthasarathy, H., Upadhyay, D.K.: Real-time simulation of H-P noisy Schrödinger equation and Belavkin filter. Quantum Inf. Process. (2017). https://doi.org/10.1007/s11128-017-1572-4

    MATH  Google Scholar 

  18. Gough, J.E., Amini, N.H.: Entropy production and information flow for Markov diffusions with filtering. arXiv preprint arXiv:1710.05553

  19. Dabrowska, A., Gough, J.: Belavkin filtering with squeezed light sources. Russ. J. Math. Phys. 23(2), 172–184 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gough, J.E.: The Gisin–Percival stochastic Schrödinger equation from standard quantum filtering theory. arXiv preprint arXiv:1710.01413

  21. Rouchon, P., Ralph, J.F.: Efficient quantum filtering for quantum feedback control. Phys. Rev. A 91, 012118 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naman Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, N., Parthasarathy, H. & Upadhyay, D.K. Belavkin filter for mixture of quadrature and photon counting process with some control techniques. Quantum Inf Process 17, 59 (2018). https://doi.org/10.1007/s11128-018-1831-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1831-z

Keywords

Navigation