Abstract
With the development of reversible and quantum computing, study of reversible and quantum circuits has also developed rapidly. Due to physical constraints, most quantum circuits require quantum gates to interact on adjacent quantum bits. However, many existing quantum circuits nearest-neighbor have large quantum cost. Therefore, how to effectively reduce quantum cost is becoming a popular research topic. In this paper, we proposed multiple optimization strategies to reduce the quantum cost of the circuit, that is, we reduce quantum cost from MCT gates decomposition, nearest neighbor and circuit simplification, respectively. The experimental results show that the proposed strategies can effectively reduce the quantum cost, and the maximum optimization rate is 30.61% compared to the corresponding results.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1832-y/MediaObjects/11128_2018_1832_Fig14_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 44(12), 261–269 (2000)
Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)
Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible Toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)
Wan, S., Chen, H., Cao, R.: A novel transformation-based algorithm for reversible logic synthesis. In: Proceedings of the 4th International Symposium on Intelligence Computation and Applications (ISICA), vol. 5821, pp. 70–81 (2009)
Cheng, X., Guan, Z.: Linear nearest neighbor quantum circuit synthesis based on valid Boolean matrix. Chin. J. Quantum Electron.(
) 33(6), 743–750 (2016) (in Chinese)
Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)
Wille, R., Quetschlich, N., Inoue, Y., Yasuda, N., Minato, S.I.: Using \(\uppi \) DDs for Nearest Neighbor Optimization of Quantum Circuits. Reversible Computation. Springer International Publishing, New York (2016)
Alfailakawi, M., Alterkawi, L., Ahmad, I., et al.: Line ordering of reversible circuits for linear nearest neighbor realization. Quantum Inf. Process. 12(10), 3319–3339 (2013)
Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process. 10(3), 355–377 (2011)
Rahman, M.M., Dueck, G.W., Chattopadhyay, A., Wille, R.: Integrated synthesis of linear nearest neighbor Ancilla-free MCT circuits. In: IEEE, International Symposium on Multiple-Valued Logic, pp. 144–149. IEEE (2016)
Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(12), 1818–1831 (2014)
Kole, A., Datta, K., Sengupta, I.: A heuristic for linear nearest neighbor realization of quantum circuits by swap gate insertion using N-gate lookahead. IEEE J. Emerg. Sel. Top. Circuits Syst. 6(1), 62–72 (2016)
Deb, A., Wille, R., Drechsler, R., Das, D.K.: An efficient reduction of common control lines for reversible circuit optimization. In: IEEE International Symposium on Multiple-Valued Logic, pp. 14–19. IEEE (2015)
Ali, M.B., Hirayama, T., Yamanaka, K., Nishitani, Y.: Quantum cost reduction of reversible circuits using new Toffoli decomposition techniques. In: International Conference on Computational Science and Computational Intelligence, pp. 59–64. IEEE (2016)
Miller, D.M., Sasanian, Z.: Lowering the quantum gate cost of reversible circuits. In: IEEE International Midwest Symposium on Circuits and Systems, pp. 260–263. IEEE (2010)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2011)
Hung, W.N.N., Song, X., Yang, G., et al.: Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(9), 1652–1663 (2006)
Drechsler, R., Wille, R.: From Truth Tables to Programming Languages: Progress in the Design of Reversible Circuits. 4(10):78-85 (2011)
Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)
Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffoli gates. IEEE International Symposium on Multiple-Valued Logic, vol. 47, pp. 288–293. IEEE (2011)
Wille, R., Keszocze, O., Walter M., et al.: Look-ahead schemes for nearest neighbor optimization of 1D and 2D quantum circuits. In: Asia and South Pacific Design Automation Conference. IEEE, vol. 2001, pp. 292–297
Acknowledgements
The authors thank the financial supports from the National Nature Science Foundation of China (60873069), General Project of Natural Science Research of Colleges and Universities of Jiangsu Province, China (14KJB520033), Natural Science Foundation of Jiangsu Province, China (BK20151274) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_1916).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tan, Yy., Cheng, Xy., Guan, Zj. et al. Multi-strategy based quantum cost reduction of linear nearest-neighbor quantum circuit. Quantum Inf Process 17, 61 (2018). https://doi.org/10.1007/s11128-018-1832-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1832-y