Abstract
In this paper we present a scheme to directly implement the iSWAP gate by passing a cyclic three-level system across a two-mode cavity quantum electrodynamics. In the scheme, a three-level \(\Delta \)-type atom ensemble prepared in its ground state mediates the interaction between the two-cavity modes. For this theoretical model, we also analyze its performance under practical noise, including spontaneous emission and the decay of the cavity modes. It is shown that our scheme may have a high fidelity under the practical noise.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1836-7/MediaObjects/11128_2018_1836_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1836-7/MediaObjects/11128_2018_1836_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1836-7/MediaObjects/11128_2018_1836_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1836-7/MediaObjects/11128_2018_1836_Fig4_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Yavuz, D.D.: Single photon SWAP gate using electromagnetically induced transparency. Phys. Rev. A 71, 053816 (2005)
Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)
Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)
Yao, W., Liu, R.B., Sham, L.J.: Theory of control of the spin-photon interface for quantum networks. Phys. Rev. Lett. 95, 030504 (2005)
Liu, Y.C., Luan, X.S., Li, H.K., Gong, Q.H., Wong, C.W., Xiao, Y.F.: Coherent polariton dynamics in coupled highly dissipative cavities. Phys. Rev. Lett. 112, 213602 (2014)
Astafiev, O., Zagoskin Jr., A.M., Abdumalikov, A.A., Paskin, Y.A., Yamamoto, T., Inomata, K., Nakamura, Y., Tsai, J.S.: Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010)
Steiner, M., Meyer, H.M., Reichel, J., Köhl, M.: Photon Emission and Absorption of a Single Ion Coupled to an Optical-Fiber Cavity. Phys. Rev. Lett. 113, 263003 (2014)
Cirac, I.J., Zoller, P.: Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74, 4091 (1995)
Rempe, G., Thompson, R.J., Brecha, R.J., Lee, W.D., Kimble, H.J.: Optical bistability and photon statistics in cavity quantum electrodynamics. Phys. Rev. Lett. 67, 1727 (1991)
Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)
Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates Phys. Rev. Lett. 74, 4087 (1995)
Schön, C., Hammerer, K., Wolf, M.M., Cirac, J.I., Solano, E.: Sequential generation of matrix-product states in cavity \(QED\). Phys. Rev. A 75, 032311 (2007)
Gershenfeld, N.A., Chuang, I.L.: Science. Bulk spin-resonance quantum computation 275, 350 (1997)
Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)
Zeng, H.S., Wang, Q., Fang, X.M., Kuang, L.M.: Universal quantum gates between distant quantum dot spins. Phys. Lett. A 374, 2129 (2010)
Brennen, G.K., Caves, C.M., Jessen, P.S., Deutsch, I.H.: Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060 (1999)
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)
Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, E.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)
Cirac, J.I., Zoller, P.: Quantum Computations with Trapped ions. Phys. Rev. Lett. 74, 4091 (1995)
Knill, E., Laflamme, R., Milbum, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)
Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)
Xiao, Y.F., Zou, X.B., He, Z.F., Guo, G.C.: Quantum phase gate in an optical cavity with atomic cloud. Phys. Rev. A 74, 044303 (2006)
Lin, G.W., Zou, X.B., Ye, M.Y., Lin, X.M., Guo, G.C.: Quantum SWAP gate in an optical cavity with an atomic cloud. Phys. Rev. A 77, 064301 (2008)
Shu, J., Zou, X.B., Xiao, Y.F., Guo, G.C.: Quantum phase gate of photonic qubits in a cavity QED system. Phys. Rev. A 75, 044302 (2007)
Sangouard, N., Lacour, X., Guerin, S., Jauslin, H.R.: Fast SWAP gate by adiabatic passage. Phys. Rev. A 72, 062309 (2005)
Wang, B., Duan, L.M.: Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation. Phys. Rev. A 75, 050304(R) (2007)
Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)
Koshino, K., Ishizaka, S., Nakamura, Y.: Deterministic photon-photon SWAP gate using a \(\Lambda \) system. Phys. Rev. A 82, 010301(R) (2010)
Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)
Wang, H., Burkard, G.: Mechanically induced two-qubit gates and maximally entangled states for single electron spins in a carbon nanotube. Phys. Rev. B 92, 195432 (2015)
Salathé, Y., Mondal, M., Opplier, M., Heinsoo, J., Kurpiers, P., Potočnik, A., Mezzacapo, A., Las Heras, U., Lamata, L., Solano, E., Filipp, S., Wallraff, A.: Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys. Rev. X 5, 021027 (2015)
Andrianov, S.N., Moiseev, S.A.: Fast and robust two- and three-qubit swapping gates on multi-atomic ensembles in quantum electrodynamic cavity. arXiv1103, 3098 (2011)
Liu, A.P., Wen, J.J., Cheng, L.Y., Su, S.L., Chen, L., Wang, H.F., Zhang, S.: Quantum cloning based on iSWAP gate with nitrogen-vacancy centers in photonic crystal cavities. Opt. Communications 333, 187–192 (2014)
Luo, M.X., Li, H.R., Wang, X.J.: Distributed atomic quantum information processing via optical fibers. Sci. Rep. 7, 1234 (2017)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)
Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Ry. Soc. London A 439, 533 (1992)
Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)
Serra, S.M., Villas-Boas, C.J., de Almeida, N.G., Moussa, M.H.Y.: Frequency up-and down-conversions in two-mode cavity quantum electrodynamics. Phys. Rev. A 71, 045802 (2005)
Guzman, R., Retamal, J.C., Solano, E., Zagury, N.: Field squeeze operators in optical cavities with atomic ensembles. Phys. Rev. Lett. 96, 010502 (2006)
Parkins, A.S., Solano, E., Cirac, J.I.: Unconditional two-mode squeezing of separated atomic ensembles. Phys. Rev. Lett. 96, 053602 (2006)
Joshi, A., Hassan, S.S., Xiao, M.: Generation of a two-mode generalized coherent state in a cavity QED system. Phys. Lett. A 367, 415 (2007)
Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111, 103604 (2013)
Chouikh, A., Said, T., Essammouni, K., Bennai, M.: Implementation of universal two- and three-qubit quantum gates in a cavity QED. Opt. Quant. Electron. 48, 463 (2016)
Zubairy, M.S., Kim, M., Scully, M.O.: Cavity-QED-based quantum phase gate. Phys. Rev. A 68, 033820 (2003)
Shao, X.Q., Chen, L., Zhang, S., Zhao, Y.F.: Swap gate and controlled swap gate base on a single resonant interaction with cavity quantum electrodynamics. Phys. Scr. 79, 065004 (2009)
Plenio, M.B., Knight, P.L.: The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101 (1998)
Li, Y., Zheng, L., Liu, Y.X., Sun, C.P.: Correlated photons and collective excitations of a cyclic atomic ensemble. Phys. Rev. A 73, 043805 (2006)
Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, Franco: Optical selection rules and phase-dependent adiabatic State Control in a superconducting quantum Circuit. Phys. Rev. Lett. 95, 087001 (2005)
Li, Y., Bruder, C., Sun, C.P.: Generalized stern-gerlach effect for chiral molecules. Phys. Rev. Lett. 99, 130403 (2007)
Kral, P., Shapiro, M.: Cyclic population transfer in quantum systems with broken symmetry. Phys. Rev. Lett. 87, 183002 (2001)
Gu, X., Frisk Kockumb, A., Miranowicz, A., Liu, Y.X., Nori, Franco: Microwave photonics with superconducting quantum circuits. arXiv:1707.02046 (2017)
Acknowledgements
This work is supported by National Natural Science Foundation of China under Grant Nos. 11674253, 11674089,11725524 and 61471356.
Author information
Authors and Affiliations
Corresponding authors
Appendix: using the time-averaging method to obtain effective hamiltonians
Appendix: using the time-averaging method to obtain effective hamiltonians
We using the uncoupled time-dependent Schrödinger equation in the interaction picture, as below:
where
where the indefinite integral is evaluated at time t without a constant of integration. These arguments can be placed on more rigorous footing by considering the evolution of a time-averaged wavefunction.
From the second part of the article, we can know
Therefore, we can obtain the effective Hamiltonian
Here, we prepare the initial state of the atom in level \(\vert {g}\rangle \), the dynamics generated by \(H_\mathrm{eff}\) acting on this state factors out and leaves the atomic state unchanged. This allows us to reduce the dynamics to that of the cavity fields only and if we confine our interest to dynamics which are time-averaged over a period much longer than the period of any of the oscillations present in the effect Hamiltonian then the oscillating terms may be neglected, and we can get the effective Hamiltonian
Here \(\zeta =\frac{g_{a}g_{b}}{\Omega }\) is the effective coupling constant.
Rights and permissions
About this article
Cite this article
Yan, Ga., Qiao, Hx. & Lu, H. Quantum iSWAP gate in optical cavities with a cyclic three-level system. Quantum Inf Process 17, 71 (2018). https://doi.org/10.1007/s11128-018-1836-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1836-7