Abstract
The entanglement-assisted formalism generalizes the standard stabilizer formalism, which can transform arbitrary classical linear codes into entanglement-assisted quantum error-correcting codes (EAQECCs) by using pre-shared entanglement between the sender and the receiver. In this work, we construct six classes of q-ary entanglement-assisted quantum MDS (EAQMDS) codes based on classical negacyclic MDS codes by exploiting two or more pre-shared maximally entangled states. We show that two of these six classes q-ary EAQMDS have minimum distance more larger than \(q+1\). Most of these q-ary EAQMDS codes are new in the sense that their parameters are not covered by the codes available in the literature.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)
Gottesman, D.: An Introduction to Quantum Error Correction. arXiv:quant-ph/0004072 v1 (2000)
Brun, T., Devetak, I., Hsieh, M.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)
Hsieh, M., Devetak, I., Brun, T.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007)
Wilde, M., Brun, T.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)
Lai, C., Brun, T.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013)
Lai, C., Brun, T.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59, 4020–4024 (2013)
Lai, C., Brun, T., Wilde, M.: Dualities and identities for entanglement-assisted quantum codes. Quantum Inf. Process. 13, 957–990 (2014)
Hsieh, M., Yen, W., Hsu, L.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory 57, 1761–1769 (2011)
Fujiwara, Y., Clark, D., Vandendriessche, P., De Boeck, M., Tonchev, V.D.: Entanglement-assisted quantum low-density parity-check codes. Phys. Rev. A 82(4), 042338 (2010)
Wilde, M., Hsieh, M., Babar, Z.: Entanglement-assisted quantum turbo codes. IEEE Trans. Inf. Theory 60, 1203–1222 (2014)
Lu, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12, 1450015 (2014)
Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 12, 1450015 (2015)
Guo, L., Li, R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61, 1474–1484 (2015)
He, X., Xu, L., Chen, H.: New q-ary quantum MDS codes with distances bigger than \(\frac{q}{2}\). Quantum Inf. Process. 15, 2745–2758 (2016)
Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. (2016). https://doi.org/10.1007/s10623-016-0281-9
Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inform. Theory 59, 1193–1197 (2013)
Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60, 2080–2086 (2014)
Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14, 881–889 (2015)
Zhang, G., Chen, B.: New quantum MDS codes. Int. J. Quantum Inf. 12, 1450019 (2014)
Zhang, T., Ge, G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61, 5224–5228 (2015)
Zhang, T., Ge, G.: Quantum MDS code with large minimum distance. Des. Codes Cryptogr. https://doi.org/10.1007/s10623-016-0245-0. (2016)
Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)
Li, R., Xu, Z.: Construction of \([[n, n.4, 3]]_{q}\) quantum MDS codes for odd prime power \(q\). Phys. Rev. A 82, 052316-1–052316-4 (2010)
Fan, J., Chen, H., Xu, J.: Constructions of \(q\)-ary entanglement-assisted quantum MDS codes with minimum distance greater than \(q+1\). Quantum Inf. Comput. 16, 0423–0434 (2016)
Berlekamp, E.: Algebraic coding theory, Revised 1984. Laguna Hills: Aegean Park (1984)
Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 13, 0021–0035 (2013)
Li, R., Zuo, F., Liu, Y.: A study of skew asymmetric \(q^{2}\)-cyclotomic coset and its application. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 12(1), 87C89 (2011). (in Chinese)
Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. (2017). https://doi.org/10.1007/s11128-017-1750-4
Acknowledgements
This work is supported by National Natural Science Foundations of China under Grant No. 11471011 and the Natural Science Foundation of Shaanxi under Grant No. 2017JQ1032. We are grateful to the two anonymous reviewers for their helpful and constructive comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lu, L., Li, R., Guo, L. et al. Entanglement-assisted quantum MDS codes from negacyclic codes. Quantum Inf Process 17, 69 (2018). https://doi.org/10.1007/s11128-018-1838-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1838-5