Skip to main content
Log in

Entanglement-assisted quantum MDS codes from negacyclic codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The entanglement-assisted formalism generalizes the standard stabilizer formalism, which can transform arbitrary classical linear codes into entanglement-assisted quantum error-correcting codes (EAQECCs) by using pre-shared entanglement between the sender and the receiver. In this work, we construct six classes of q-ary entanglement-assisted quantum MDS (EAQMDS) codes based on classical negacyclic MDS codes by exploiting two or more pre-shared maximally entangled states. We show that two of these six classes q-ary EAQMDS have minimum distance more larger than \(q+1\). Most of these q-ary EAQMDS codes are new in the sense that their parameters are not covered by the codes available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  2. Gottesman, D.: An Introduction to Quantum Error Correction. arXiv:quant-ph/0004072 v1 (2000)

  3. Brun, T., Devetak, I., Hsieh, M.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Hsieh, M., Devetak, I., Brun, T.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007)

    Article  ADS  Google Scholar 

  5. Wilde, M., Brun, T.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)

    Article  ADS  Google Scholar 

  6. Lai, C., Brun, T.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013)

    Article  ADS  Google Scholar 

  7. Lai, C., Brun, T.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59, 4020–4024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lai, C., Brun, T., Wilde, M.: Dualities and identities for entanglement-assisted quantum codes. Quantum Inf. Process. 13, 957–990 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hsieh, M., Yen, W., Hsu, L.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory 57, 1761–1769 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fujiwara, Y., Clark, D., Vandendriessche, P., De Boeck, M., Tonchev, V.D.: Entanglement-assisted quantum low-density parity-check codes. Phys. Rev. A 82(4), 042338 (2010)

    Article  ADS  Google Scholar 

  11. Wilde, M., Hsieh, M., Babar, Z.: Entanglement-assisted quantum turbo codes. IEEE Trans. Inf. Theory 60, 1203–1222 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lu, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12, 1450015 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 12, 1450015 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, L., Li, R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013)

    Article  ADS  Google Scholar 

  15. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61, 1474–1484 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, X., Xu, L., Chen, H.: New q-ary quantum MDS codes with distances bigger than \(\frac{q}{2}\). Quantum Inf. Process. 15, 2745–2758 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. (2016). https://doi.org/10.1007/s10623-016-0281-9

    MATH  Google Scholar 

  18. Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inform. Theory 59, 1193–1197 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60, 2080–2086 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14, 881–889 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Zhang, G., Chen, B.: New quantum MDS codes. Int. J. Quantum Inf. 12, 1450019 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, T., Ge, G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61, 5224–5228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, T., Ge, G.: Quantum MDS code with large minimum distance. Des. Codes Cryptogr. https://doi.org/10.1007/s10623-016-0245-0. (2016)

  24. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, R., Xu, Z.: Construction of \([[n, n.4, 3]]_{q}\) quantum MDS codes for odd prime power \(q\). Phys. Rev. A 82, 052316-1–052316-4 (2010)

    ADS  Google Scholar 

  26. Fan, J., Chen, H., Xu, J.: Constructions of \(q\)-ary entanglement-assisted quantum MDS codes with minimum distance greater than \(q+1\). Quantum Inf. Comput. 16, 0423–0434 (2016)

    MathSciNet  Google Scholar 

  27. Berlekamp, E.: Algebraic coding theory, Revised 1984. Laguna Hills: Aegean Park (1984)

  28. Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 13, 0021–0035 (2013)

    MathSciNet  Google Scholar 

  29. Li, R., Zuo, F., Liu, Y.: A study of skew asymmetric \(q^{2}\)-cyclotomic coset and its application. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 12(1), 87C89 (2011). (in Chinese)

  30. Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. (2017). https://doi.org/10.1007/s11128-017-1750-4

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundations of China under Grant No. 11471011 and the Natural Science Foundation of Shaanxi under Grant No. 2017JQ1032. We are grateful to the two anonymous reviewers for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangdong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Li, R., Guo, L. et al. Entanglement-assisted quantum MDS codes from negacyclic codes. Quantum Inf Process 17, 69 (2018). https://doi.org/10.1007/s11128-018-1838-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1838-5

Keywords

Navigation