Abstract
Entanglement plays a vital and in many cases non-replaceable role in the quantum network communication. Here, we propose two new protocols to jointly and remotely prepare a special so-called bipartite equatorial state which is hybrid in the sense that it entangles two Hilbert spaces with arbitrary different dimensions D and N (i.e., a type of entanglement between a quDit and a quNit). The quantum channels required to do that are however not necessarily hybrid. In fact, we utilize four high-dimensional Einstein–Podolsky–Rosen pairs, two of which are quDit–quDit entanglements, while the other two are quNit–quNit ones. In the first protocol the receiver has to be involved actively in the process of remote state preparation, while in the second protocol the receiver is passive as he/she needs to participate only in the final step for reconstructing the target hybrid state. Each protocol meets a specific circumstance that may be encountered in practice and both can be performed with unit success probability. Moreover, the concerned equatorial hybrid entangled state can also be jointly prepared for two receivers at two separated locations by slightly modifying the initial particles’ distribution, thereby establishing between them an entangled channel ready for a later use.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Born, M.: Letter from Albert Einstein to Max Born Physik im Wandel Meiner Zeit, p. 228. Springer, Berlin (1983)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Bennett, B.H, Brassard, G.: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, p. 175. IEEE, New York (1984)
Bennett, C.H., Wiesner, S.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Bennett, B.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Press, Los Alamitos (1994)
Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)
Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)
Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)
Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold \(S^{n-1}\). Phys. Rev. A 65, 022316 (2002)
Audenaert, K., Plenio, M.B., Eisert, J.: Entanglement cost under positive-partial-transpose-preserving operations. Phys. Rev. Lett. 90, 027901 (2003)
Peng, X.H., Zhu, X.W., Fang, X., Feng, M., Liu, M.L., Gao, K.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)
Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)
Xia, Y., Song, J., Song, S.H.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40, 3719 (2007)
An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41, 095501 (2008)
An, N.B., Kim, J.: Collective remote state preparation. Int. J. Quantum Inf. 6, 1051 (2008)
An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42, 125501 (2009)
An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113 (2010)
Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374, 4483 (2010)
An, N.B., Bich, C.T., Don, N.V.: Deterministic joint remote state preparation. Phys. Lett. A 375, 3570 (2011)
Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284, 2617 (2011)
Zhan, Y.B., Hu, B.L., Ma, P.C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B At. Mol. Opt. Phys. 44, 095501 (2011)
Wang, Z.Y.: Joint remote preparation of a multi-qubit GHZ-class state via bipartite entanglements. Int. J. Quantum Inf. 9, 809 (2011)
Xiao, X.Q., Liu, J.M., Zeng, G.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44, 075501 (2011)
Xia, Y., Chen, Q.Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein–Podolsky–Rosen pairs with a passive receiver. J. Phys. A Math. Theor. 45, 335306 (2012)
Luo, M.X., Chen, X.B., Yang, Y.X., Niu, X.X.: Experimental architecture of joint remote state preparation. Quantum Inf. Process. 11, 751 (2012)
Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377, 2524 (2013)
Li, H., Ping, Y., Pan, X., Luo, M., Zhang, Z.: Joint remote preparation of an arbitrary three-qubit state with mixed resources. Int. J. Theor. Phys. 52, 4265 (2013)
Ai, L.T., Nong, L., Zhou, P.: Efficient joint remote preparation of an arbitrary m-qudit state with partially entangled states. Int. J. Theor. Phys. 53, 159 (2014)
Yu, R.F., Lin, Y.J., Zhou, P.: Joint remote preparation of arbitrary two- and three-photon state with linear-optical elements. Quantum Inf. Process. 15, 4785 (2016)
Chen, N., Quan, D.X., Zhu, C.H., Liand, J.Z., Pei, C.X.: Deterministic joint remote state preparation via partially entangled quantum channel. Int. J. Quantum Inform. 14, 1650015 (2016)
Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15, 4805 (2016)
Zhao, H.X., Huang, L.: Effects of noise on joint remote state preparation of an arbitrary equatorial two-qubit state. Int. J. Theor. Phys. 56, 720 (2017)
Adepoju, A.G., Falaye, B.J., Sun, G.H., Nieto, O.C., Dong, S.H.: Joint remote state preparation of two-qubit equatorial state in quantum noisy channels. Phys. Lett. A 381, 581 (2017)
Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56, 1052 (2017)
Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512 (2002)
Durt, T., Englert, B.G., Bengtsson, I., Zyczkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 08, 535 (2010)
Pasquinucci, H.B., Peres, A.: Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85, 3313 (2000)
Pasquinucci, H.B., Tittel, W.: Quantum cryptography using larger alphabets. Phys. Rev. A 61, 06230 (2000)
Bourennane, M., Karlsson, A., Björk, G.: Quantum key distribution using multilevel encoding. Phys. Rev. A 64, 012306 (2001)
Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)
Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using \(\mathit{d}\) -level systems. Phys. Rev. Lett. 88, 127902 (2002)
Walborn, S.P., Lemelle, D.S., Almeida, M.P., Souto Ribeiro, P.S.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)
Kaszlikowski, D., Gnaciński, P., Zukowski, M., Miklaszewski, W., Zeilinger, A.: Violations of local realism by two entangled \(N\)-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418 (2000)
Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)
Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010)
Lee, N., Benichi, H., Takeno, Y., Takeda, S., Webb, J., Huntington, E., Furusawa, A.: Teleportation of nonclassical wave packets of light. Science 332, 330 (2011)
Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)
Park, K., Lee, S.W., Jeong, H.: Quantum teleportation between particlelike and fieldlike qubits using hybrid entanglement under decoherence effects. Phys. Rev. A 86, 062301 (2012)
Kwon, H., Jeong, H.: Violation of the Bell–Clauser-Horne-Shimony-Holt inequality using imperfect photodetectors with optical hybrid states. Phys. Rev. A 88, 052127 (2013)
Costanzo, L.S., Zavatta, A., Grandi, S., Bellini, M., Jeong, H., Kang, M., Lee, S.W., Ralph, T.C.: Experimental hybrid entanglement between quantum and classical states of light. Int. J. Quantum Inf. 12, 1560015 (2014)
Kwon, H., Jeong, H.: Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A 91, 012340 (2015)
Podoshvedov, A.S.: Elementary quantum gates in different bases. Quantum Inf. Process. 15, 3967 (2016)
Tao, Y.H., Nan, H., Zhang, J., Fei, S.M.: Mutually unbiased maximally entangled bases in \(\cal{C}^{d} \otimes \cal{C}^{dk}\). Quantum Inf. Process. 14, 2291 (2015)
Luo, L., Li, X., Tao, Y.: Two types of maximally entangled bases and their mutually unbiased Property in \(\cal{C}^{d} \otimes \cal{C}^{d^{^{\prime }}}\). Int. J. Theor. Phys. 55, 5069 (2016)
Cai, T., Jiang, M.: Optimal joint remote state preparation of arbitrary equatorial multi-qudit states. Int. J. Theor. Phys. 56, 781 (2017)
Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s Theorem Quantum Theory and Conceptions of the Universe. Kluwer, Dordrecht (1989)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Zaidi, H.A., van Loock, P.: Beating the one-half limit of ancilla-free linear optics Bell measurements. Phys. Rev. Lett. 110, 260501 (2013)
Ewert, F., van Loock, P.: 3/4-efficient Bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett. 113, 140403 (2014)
Lee, S.W., Park, K., Ralph, T.C., Jeong, H.: Nearly deterministic Bell measurement for multiphoton qubits and its application to quantum information processing. Phys. Rev. Lett. 114, 123603 (2015)
Acknowledgements
This work is supported by the Vietnam Foundation for Science and Technology Development (NAFOSTED) under a Project No. 103.01-2017.08.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bich, C.T., Dat, L.T., Van Hop, N. et al. Deterministic joint remote preparation of an equatorial hybrid state via high-dimensional Einstein–Podolsky–Rosen pairs: active versus passive receiver. Quantum Inf Process 17, 75 (2018). https://doi.org/10.1007/s11128-018-1848-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1848-3