Skip to main content
Log in

Deterministic joint remote preparation of an equatorial hybrid state via high-dimensional Einstein–Podolsky–Rosen pairs: active versus passive receiver

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Entanglement plays a vital and in many cases non-replaceable role in the quantum network communication. Here, we propose two new protocols to jointly and remotely prepare a special so-called bipartite equatorial state which is hybrid in the sense that it entangles two Hilbert spaces with arbitrary different dimensions D and N (i.e., a type of entanglement between a quDit and a quNit). The quantum channels required to do that are however not necessarily hybrid. In fact, we utilize four high-dimensional Einstein–Podolsky–Rosen pairs, two of which are quDit–quDit entanglements, while the other two are quNit–quNit ones. In the first protocol the receiver has to be involved actively in the process of remote state preparation, while in the second protocol the receiver is passive as he/she needs to participate only in the final step for reconstructing the target hybrid state. Each protocol meets a specific circumstance that may be encountered in practice and both can be performed with unit success probability. Moreover, the concerned equatorial hybrid entangled state can also be jointly prepared for two receivers at two separated locations by slightly modifying the initial particles’ distribution, thereby establishing between them an entangled channel ready for a later use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Born, M.: Letter from Albert Einstein to Max Born Physik im Wandel Meiner Zeit, p. 228. Springer, Berlin (1983)

    Book  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Bennett, B.H, Brassard, G.: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, p. 175. IEEE, New York (1984)

  4. Bennett, C.H., Wiesner, S.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, B.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Press, Los Alamitos (1994)

  7. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  8. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  9. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  10. Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold \(S^{n-1}\). Phys. Rev. A 65, 022316 (2002)

    Article  ADS  Google Scholar 

  11. Audenaert, K., Plenio, M.B., Eisert, J.: Entanglement cost under positive-partial-transpose-preserving operations. Phys. Rev. Lett. 90, 027901 (2003)

    Article  ADS  Google Scholar 

  12. Peng, X.H., Zhu, X.W., Fang, X., Feng, M., Liu, M.L., Gao, K.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  13. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  14. Xia, Y., Song, J., Song, S.H.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40, 3719 (2007)

    Article  ADS  Google Scholar 

  15. An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41, 095501 (2008)

    Article  ADS  Google Scholar 

  16. An, N.B., Kim, J.: Collective remote state preparation. Int. J. Quantum Inf. 6, 1051 (2008)

    Article  MATH  Google Scholar 

  17. An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42, 125501 (2009)

    Article  ADS  Google Scholar 

  18. An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113 (2010)

    Article  ADS  Google Scholar 

  19. Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374, 4483 (2010)

    Article  ADS  MATH  Google Scholar 

  20. An, N.B., Bich, C.T., Don, N.V.: Deterministic joint remote state preparation. Phys. Lett. A 375, 3570 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284, 2617 (2011)

    Article  ADS  Google Scholar 

  22. Zhan, Y.B., Hu, B.L., Ma, P.C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B At. Mol. Opt. Phys. 44, 095501 (2011)

    Article  ADS  Google Scholar 

  23. Wang, Z.Y.: Joint remote preparation of a multi-qubit GHZ-class state via bipartite entanglements. Int. J. Quantum Inf. 9, 809 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xiao, X.Q., Liu, J.M., Zeng, G.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44, 075501 (2011)

    Article  ADS  Google Scholar 

  25. Xia, Y., Chen, Q.Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein–Podolsky–Rosen pairs with a passive receiver. J. Phys. A Math. Theor. 45, 335306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo, M.X., Chen, X.B., Yang, Y.X., Niu, X.X.: Experimental architecture of joint remote state preparation. Quantum Inf. Process. 11, 751 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377, 2524 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Li, H., Ping, Y., Pan, X., Luo, M., Zhang, Z.: Joint remote preparation of an arbitrary three-qubit state with mixed resources. Int. J. Theor. Phys. 52, 4265 (2013)

    Article  MATH  Google Scholar 

  29. Ai, L.T., Nong, L., Zhou, P.: Efficient joint remote preparation of an arbitrary m-qudit state with partially entangled states. Int. J. Theor. Phys. 53, 159 (2014)

    Article  MATH  Google Scholar 

  30. Yu, R.F., Lin, Y.J., Zhou, P.: Joint remote preparation of arbitrary two- and three-photon state with linear-optical elements. Quantum Inf. Process. 15, 4785 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Chen, N., Quan, D.X., Zhu, C.H., Liand, J.Z., Pei, C.X.: Deterministic joint remote state preparation via partially entangled quantum channel. Int. J. Quantum Inform. 14, 1650015 (2016)

    Article  ADS  MATH  Google Scholar 

  32. Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15, 4805 (2016)

    Article  ADS  MATH  Google Scholar 

  33. Zhao, H.X., Huang, L.: Effects of noise on joint remote state preparation of an arbitrary equatorial two-qubit state. Int. J. Theor. Phys. 56, 720 (2017)

    Article  MATH  Google Scholar 

  34. Adepoju, A.G., Falaye, B.J., Sun, G.H., Nieto, O.C., Dong, S.H.: Joint remote state preparation of two-qubit equatorial state in quantum noisy channels. Phys. Lett. A 381, 581 (2017)

    Article  ADS  Google Scholar 

  35. Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56, 1052 (2017)

    Article  MATH  Google Scholar 

  36. Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Durt, T., Englert, B.G., Bengtsson, I., Zyczkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 08, 535 (2010)

    Article  MATH  Google Scholar 

  38. Pasquinucci, H.B., Peres, A.: Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85, 3313 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Pasquinucci, H.B., Tittel, W.: Quantum cryptography using larger alphabets. Phys. Rev. A 61, 06230 (2000)

    MathSciNet  Google Scholar 

  40. Bourennane, M., Karlsson, A., Björk, G.: Quantum key distribution using multilevel encoding. Phys. Rev. A 64, 012306 (2001)

    Article  ADS  Google Scholar 

  41. Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)

    Article  ADS  Google Scholar 

  42. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using \(\mathit{d}\) -level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  43. Walborn, S.P., Lemelle, D.S., Almeida, M.P., Souto Ribeiro, P.S.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)

    Article  ADS  Google Scholar 

  44. Kaszlikowski, D., Gnaciński, P., Zukowski, M., Miklaszewski, W., Zeilinger, A.: Violations of local realism by two entangled \(N\)-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418 (2000)

    Article  ADS  Google Scholar 

  45. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010)

    Article  Google Scholar 

  47. Lee, N., Benichi, H., Takeno, Y., Takeda, S., Webb, J., Huntington, E., Furusawa, A.: Teleportation of nonclassical wave packets of light. Science 332, 330 (2011)

    Article  ADS  Google Scholar 

  48. Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)

    Article  ADS  Google Scholar 

  49. Park, K., Lee, S.W., Jeong, H.: Quantum teleportation between particlelike and fieldlike qubits using hybrid entanglement under decoherence effects. Phys. Rev. A 86, 062301 (2012)

    Article  ADS  Google Scholar 

  50. Kwon, H., Jeong, H.: Violation of the Bell–Clauser-Horne-Shimony-Holt inequality using imperfect photodetectors with optical hybrid states. Phys. Rev. A 88, 052127 (2013)

    Article  ADS  Google Scholar 

  51. Costanzo, L.S., Zavatta, A., Grandi, S., Bellini, M., Jeong, H., Kang, M., Lee, S.W., Ralph, T.C.: Experimental hybrid entanglement between quantum and classical states of light. Int. J. Quantum Inf. 12, 1560015 (2014)

    Article  Google Scholar 

  52. Kwon, H., Jeong, H.: Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A 91, 012340 (2015)

    Article  ADS  Google Scholar 

  53. Podoshvedov, A.S.: Elementary quantum gates in different bases. Quantum Inf. Process. 15, 3967 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Tao, Y.H., Nan, H., Zhang, J., Fei, S.M.: Mutually unbiased maximally entangled bases in \(\cal{C}^{d} \otimes \cal{C}^{dk}\). Quantum Inf. Process. 14, 2291 (2015)

    Article  ADS  Google Scholar 

  55. Luo, L., Li, X., Tao, Y.: Two types of maximally entangled bases and their mutually unbiased Property in \(\cal{C}^{d} \otimes \cal{C}^{d^{^{\prime }}}\). Int. J. Theor. Phys. 55, 5069 (2016)

    Article  MATH  Google Scholar 

  56. Cai, T., Jiang, M.: Optimal joint remote state preparation of arbitrary equatorial multi-qudit states. Int. J. Theor. Phys. 56, 781 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s Theorem Quantum Theory and Conceptions of the Universe. Kluwer, Dordrecht (1989)

    Google Scholar 

  58. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  59. Zaidi, H.A., van Loock, P.: Beating the one-half limit of ancilla-free linear optics Bell measurements. Phys. Rev. Lett. 110, 260501 (2013)

    Article  ADS  Google Scholar 

  60. Ewert, F., van Loock, P.: 3/4-efficient Bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett. 113, 140403 (2014)

    Article  ADS  Google Scholar 

  61. Lee, S.W., Park, K., Ralph, T.C., Jeong, H.: Nearly deterministic Bell measurement for multiphoton qubits and its application to quantum information processing. Phys. Rev. Lett. 114, 123603 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Vietnam Foundation for Science and Technology Development (NAFOSTED) under a Project No. 103.01-2017.08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Ba An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bich, C.T., Dat, L.T., Van Hop, N. et al. Deterministic joint remote preparation of an equatorial hybrid state via high-dimensional Einstein–Podolsky–Rosen pairs: active versus passive receiver. Quantum Inf Process 17, 75 (2018). https://doi.org/10.1007/s11128-018-1848-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1848-3

Keywords

Navigation