Skip to main content
Log in

Control of single-photon routing in a T-shaped waveguide by another atom

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum routers with a high routing rate of much more than 0.5 are of great importance for quantum networks. We provide a scheme to perform bidirectional high routing-rate transfer in a T-shaped coupled-resonator waveguide (CRW), which extends a recent unidirectional scheme proposed by Lu et al. (Opt Express 23:22955, 2015). By locating an extra two-level atom in the infinite CRW channel of the T-shaped CRW with a three-level system, an effective potential is generated. Our numerical results show that high routing capability from the infinite CRW channel to the semi-infinite channel can be achieved, and routing capability from the semi-infinite CRW channel to the infinite channel can also be significantly enhanced, with the help of the effective potential. Therefore, the proposed double-atom configuration could be utilized as a bidirectional quantum routing controller to implement high transfer rate routing of single photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kimble, H.J.: The quantum internet. Nature (London) 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  2. Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102(8), 083601 (2009)

    Article  ADS  Google Scholar 

  3. Xia, K., Twamley, J.: All-optical switching and router via the direct quantum control of coupling between cavity modes. Phys. Rev. X 3(3), 031013 (2013)

    Google Scholar 

  4. Shomroni, I., Rosenblum, S., Lovsky, Y., Brechler, O., Guendelman, G., Dayan, B.: All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345(6199), 903–906 (2014)

    Article  ADS  Google Scholar 

  5. Hu, C.Y.: Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors. Phys. Rev. B 94(24), 245307 (2016)

    Article  ADS  Google Scholar 

  6. Hu, C.Y.: Photonic transistor and router using a single quantum-dotconfined spin in a single-sided optical microcavity. Sci. Rep. 7, 45582 (2017)

    Article  ADS  Google Scholar 

  7. Cao, C., Duan, Y.W., Chen, X., Zhang, R., Wang, T.J., Wang, C.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25(15), 16931 (2017)

    Article  ADS  Google Scholar 

  8. Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107(7), 073601 (2011)

    Article  ADS  Google Scholar 

  9. Agarwal, G.S., Huang, S.: Optomechanical systems as single-photon routers. Phys. Rev. A 85(2), 021801 (2012)

    Article  ADS  Google Scholar 

  10. Li, X., Zhang, W.Z., Xiong, B., Zhou, L.: Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci. Rep. 6, 39343 (2016)

    Article  ADS  Google Scholar 

  11. Ma, X.S., Zotter, S., Kofler, J., Jennewein, T., Zeilinger, A.: Experimental generation of single photons via active multiplexing. Phys. Rev. A 83(4), 043814 (2011)

    Article  ADS  Google Scholar 

  12. Lemr, K., Černoch, A.: Linear-optical programmable quantum router. Opt. Commun. 300, 282–285 (2013)

    Article  ADS  Google Scholar 

  13. Yan, G.A., Cai, Q.Y., Chen, A.X.: Information-holding quantum router of single photons using natural atom. Eur. Phys. J. D 70, 93 (2016)

    Article  ADS  Google Scholar 

  14. Yan, G.A., Qiao, H.X., Lu, H., Chen, A.X.: Quantum information-holding single-photon router based on spontaneous emission. Sci. China Phys. Mech. Astron. 60(9), 090311 (2017)

    Article  ADS  Google Scholar 

  15. Bartkiewicz, K., Černoch, A., Lemr, K.: Using quantum routers to implement quantum message authentication and Bell-state manipulation. Phys. Rev. A 90(2), 022335 (2014)

    Article  ADS  Google Scholar 

  16. Yuan, X.X., Ma, J.J., Hou, P.Y., Chang, X.Y., Zu, C., Duan, L.M.: Experimental demonstration of a quantum router. Sci. Rep. 5, 12452 (2015)

    Article  ADS  Google Scholar 

  17. Shen, J.T., Fan, S.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30(15), 2001–2003 (2005)

    Article  ADS  Google Scholar 

  18. Shen, J.T., Fan, S.: Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95(21), 213001 (2005)

    Article  ADS  Google Scholar 

  19. Chang, D.E., Sorensen, A.S., Demler, E.A., Lukin, M.D.: A single-photon transistor using nano-scale surface plasmons. Nat. Phys. 3, 807–812 (2007)

    Article  Google Scholar 

  20. Shen, J.T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79(2), 023837 (2009)

    Article  ADS  Google Scholar 

  21. Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101(10), 100501 (2008)

    Article  ADS  Google Scholar 

  22. Zhou, L., Dong, H., Sun, C.P., Nori, F.: Quantum supercavity with atomic mirrors. Phys. Rev. A 78(6), 063827 (2008)

    Article  ADS  Google Scholar 

  23. Mazzarella, L., Ticozzi, F., Sergienko, A.V., Vallone, G., Villoresi, P.: Asymmetric architecture for heralded single-photon sources. Phys. Rev. A 88(2), 023848 (2013)

    Article  ADS  Google Scholar 

  24. Xiao, H.L., Zhang, Z.S.: Subcarrier multiplexing multiple-input multiple-output quantum key distribution with orthogonal quantum states. Quantum Inf. Process. 16(13), 1–18 (2017)

    ADS  MATH  Google Scholar 

  25. Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111(10), 103604 (2013)

    Article  ADS  Google Scholar 

  26. Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89(1), 013805 (2014)

    Article  ADS  Google Scholar 

  27. Yan, W.B., Liu, B., Zhou, L., Fan, H.: All-optical router at single-photon level by interference. Europhys. Lett. 111, 64005 (2015)

    Article  ADS  Google Scholar 

  28. Yan, W.B., Fan, H.: Single-photon quantum router with multiple output ports. Sci. Rep. 4, 4820 (2014)

    Article  Google Scholar 

  29. Lu, J., Wang, Z.H., Zhou, L.: T-shaped single-photon router. Opt. Express 23(18), 22955–22962 (2015)

    Article  ADS  Google Scholar 

  30. Lemr, K., Bartkiewicz, K., Černoch, A., Soubusta, J.: Resource-efficient linear-optical quantum router. Phys. Rev. A 87(6), 062333 (2013)

    Article  ADS  Google Scholar 

  31. Li, X.M., Wei, L.F.: Designable single-photon quantum routings with atomic mirrors. Phys. Rev. A 92(6), 063836 (2015)

    Article  ADS  Google Scholar 

  32. Li, Y., Bruder, C., Sun, C.P.: Generalized Stern-Gerlach effect for chiral molecules. Phys. Rev. Lett. 99(13), 130403 (2007)

    Article  ADS  Google Scholar 

  33. Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95(8), 087001 (2005)

    Article  ADS  Google Scholar 

  34. Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69(6), 062320 (2004)

    Article  ADS  Google Scholar 

  35. Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75(3), 032329 (2007)

    Article  ADS  Google Scholar 

  36. Peropadre, B., Forn-Díaz, P., Solano, E., García-Ripoll, J.J.: Switchable ultrastrong coupling in circuit QED. Phys. Rev. Lett. 105(2), 023601 (2010)

    Article  ADS  Google Scholar 

  37. Romero, G., Ballester, D., Wang, Y.M., Scarani, V., Solano, E.: Ultrafast quantum gates in circuit QED. Phys. Rev. Lett. 108(12), 120501 (2012)

    Article  ADS  Google Scholar 

  38. Richer, S., DiVincenzo, D.: Circuit design implementing longitudinal coupling: a scalable scheme for superconducting qubits. Phys. Rev. B 93(13), 134501 (2016)

    Article  ADS  Google Scholar 

  39. Richer, S., Maleeva, N., Skacel, S.T., Pop, I.M., DiVincenzo, D.: Inductively shunted transmon qubit with tunable transverse and longitudinal coupling Susanne. Phys. Rev. B 96(17), 174520 (2017)

    Article  ADS  Google Scholar 

  40. Chen, W., Chen, G.Y., Chen, Y.N.: Coherent transport of nanowire surface plasmons coupled to quantum dots. Opt. Express 18(10), 10360 (2010)

    Article  ADS  Google Scholar 

  41. Notomi, M., Kuramochi, E., Tanabe, T.: Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat. Photon. 2, 741–747 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11247032, 11365011), by the Natural Science Foundation of Jiangxi (Grant No. 20151BAB202012), and by the Scientific Research Foundation of Jiangxi University of Science and Technology (Grant No. NSFJ2014-K18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Song Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JS., Wang, JW., Wang, Y. et al. Control of single-photon routing in a T-shaped waveguide by another atom. Quantum Inf Process 17, 78 (2018). https://doi.org/10.1007/s11128-018-1850-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1850-9

Keywords

Navigation