Abstract
Quantum routers with a high routing rate of much more than 0.5 are of great importance for quantum networks. We provide a scheme to perform bidirectional high routing-rate transfer in a T-shaped coupled-resonator waveguide (CRW), which extends a recent unidirectional scheme proposed by Lu et al. (Opt Express 23:22955, 2015). By locating an extra two-level atom in the infinite CRW channel of the T-shaped CRW with a three-level system, an effective potential is generated. Our numerical results show that high routing capability from the infinite CRW channel to the semi-infinite channel can be achieved, and routing capability from the semi-infinite CRW channel to the infinite channel can also be significantly enhanced, with the help of the effective potential. Therefore, the proposed double-atom configuration could be utilized as a bidirectional quantum routing controller to implement high transfer rate routing of single photons.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kimble, H.J.: The quantum internet. Nature (London) 453, 1023–1030 (2008)
Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102(8), 083601 (2009)
Xia, K., Twamley, J.: All-optical switching and router via the direct quantum control of coupling between cavity modes. Phys. Rev. X 3(3), 031013 (2013)
Shomroni, I., Rosenblum, S., Lovsky, Y., Brechler, O., Guendelman, G., Dayan, B.: All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345(6199), 903–906 (2014)
Hu, C.Y.: Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors. Phys. Rev. B 94(24), 245307 (2016)
Hu, C.Y.: Photonic transistor and router using a single quantum-dotconfined spin in a single-sided optical microcavity. Sci. Rep. 7, 45582 (2017)
Cao, C., Duan, Y.W., Chen, X., Zhang, R., Wang, T.J., Wang, C.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25(15), 16931 (2017)
Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107(7), 073601 (2011)
Agarwal, G.S., Huang, S.: Optomechanical systems as single-photon routers. Phys. Rev. A 85(2), 021801 (2012)
Li, X., Zhang, W.Z., Xiong, B., Zhou, L.: Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci. Rep. 6, 39343 (2016)
Ma, X.S., Zotter, S., Kofler, J., Jennewein, T., Zeilinger, A.: Experimental generation of single photons via active multiplexing. Phys. Rev. A 83(4), 043814 (2011)
Lemr, K., Černoch, A.: Linear-optical programmable quantum router. Opt. Commun. 300, 282–285 (2013)
Yan, G.A., Cai, Q.Y., Chen, A.X.: Information-holding quantum router of single photons using natural atom. Eur. Phys. J. D 70, 93 (2016)
Yan, G.A., Qiao, H.X., Lu, H., Chen, A.X.: Quantum information-holding single-photon router based on spontaneous emission. Sci. China Phys. Mech. Astron. 60(9), 090311 (2017)
Bartkiewicz, K., Černoch, A., Lemr, K.: Using quantum routers to implement quantum message authentication and Bell-state manipulation. Phys. Rev. A 90(2), 022335 (2014)
Yuan, X.X., Ma, J.J., Hou, P.Y., Chang, X.Y., Zu, C., Duan, L.M.: Experimental demonstration of a quantum router. Sci. Rep. 5, 12452 (2015)
Shen, J.T., Fan, S.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30(15), 2001–2003 (2005)
Shen, J.T., Fan, S.: Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95(21), 213001 (2005)
Chang, D.E., Sorensen, A.S., Demler, E.A., Lukin, M.D.: A single-photon transistor using nano-scale surface plasmons. Nat. Phys. 3, 807–812 (2007)
Shen, J.T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79(2), 023837 (2009)
Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101(10), 100501 (2008)
Zhou, L., Dong, H., Sun, C.P., Nori, F.: Quantum supercavity with atomic mirrors. Phys. Rev. A 78(6), 063827 (2008)
Mazzarella, L., Ticozzi, F., Sergienko, A.V., Vallone, G., Villoresi, P.: Asymmetric architecture for heralded single-photon sources. Phys. Rev. A 88(2), 023848 (2013)
Xiao, H.L., Zhang, Z.S.: Subcarrier multiplexing multiple-input multiple-output quantum key distribution with orthogonal quantum states. Quantum Inf. Process. 16(13), 1–18 (2017)
Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111(10), 103604 (2013)
Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89(1), 013805 (2014)
Yan, W.B., Liu, B., Zhou, L., Fan, H.: All-optical router at single-photon level by interference. Europhys. Lett. 111, 64005 (2015)
Yan, W.B., Fan, H.: Single-photon quantum router with multiple output ports. Sci. Rep. 4, 4820 (2014)
Lu, J., Wang, Z.H., Zhou, L.: T-shaped single-photon router. Opt. Express 23(18), 22955–22962 (2015)
Lemr, K., Bartkiewicz, K., Černoch, A., Soubusta, J.: Resource-efficient linear-optical quantum router. Phys. Rev. A 87(6), 062333 (2013)
Li, X.M., Wei, L.F.: Designable single-photon quantum routings with atomic mirrors. Phys. Rev. A 92(6), 063836 (2015)
Li, Y., Bruder, C., Sun, C.P.: Generalized Stern-Gerlach effect for chiral molecules. Phys. Rev. Lett. 99(13), 130403 (2007)
Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95(8), 087001 (2005)
Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69(6), 062320 (2004)
Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75(3), 032329 (2007)
Peropadre, B., Forn-Díaz, P., Solano, E., García-Ripoll, J.J.: Switchable ultrastrong coupling in circuit QED. Phys. Rev. Lett. 105(2), 023601 (2010)
Romero, G., Ballester, D., Wang, Y.M., Scarani, V., Solano, E.: Ultrafast quantum gates in circuit QED. Phys. Rev. Lett. 108(12), 120501 (2012)
Richer, S., DiVincenzo, D.: Circuit design implementing longitudinal coupling: a scalable scheme for superconducting qubits. Phys. Rev. B 93(13), 134501 (2016)
Richer, S., Maleeva, N., Skacel, S.T., Pop, I.M., DiVincenzo, D.: Inductively shunted transmon qubit with tunable transverse and longitudinal coupling Susanne. Phys. Rev. B 96(17), 174520 (2017)
Chen, W., Chen, G.Y., Chen, Y.N.: Coherent transport of nanowire surface plasmons coupled to quantum dots. Opt. Express 18(10), 10360 (2010)
Notomi, M., Kuramochi, E., Tanabe, T.: Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat. Photon. 2, 741–747 (2008)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11247032, 11365011), by the Natural Science Foundation of Jiangxi (Grant No. 20151BAB202012), and by the Scientific Research Foundation of Jiangxi University of Science and Technology (Grant No. NSFJ2014-K18).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, JS., Wang, JW., Wang, Y. et al. Control of single-photon routing in a T-shaped waveguide by another atom. Quantum Inf Process 17, 78 (2018). https://doi.org/10.1007/s11128-018-1850-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1850-9