Abstract
We apply genuine multipartite concurrence to investigate entanglement properties of three Jaynes–Cummings systems. Three atoms are initially put in GHZ-like state and locally interact with three independent cavities, respectively. We present analytical concurrence expressions for various subsystems including three-atom, three-cavity and some atom-cavity mixed systems. We also examine the global system and illustrate the evolution of its concurrence. Except for the sudden death of entanglement, we find for some initial entanglement parameter \(\theta \), the concurrence of the global system may maintain unchanged in some time intervals.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Vedral, V.: Modern Foundations of Quantum Optics. Imperial College Press, London (2005)
Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)
Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)
Yönaç, M., Yu, T., Eberly, J.H.: Sudden death of entanglement of two Jaynes–Cummings atoms. J. Phys. B At. Mol. Opt. Phys. 39, S621–S625 (2006)
Yönaç, M., Yu, T., Eberly, J.H.: Pairwise concurrence dynamics: a four-qubit model. J. Phys. B At. Mol. Opt. Phys. 40, S45–S59 (2007)
Groves, E., Clader, B.D., Eberly, J.H.: Jaynes–Cummings theory out of the box. J. Phys. B At. Mol. Opt. Phys. 46, 224005 (2013)
Li, Z.J., Li, J.Q., Jin, Y.H., Nie, Y.H.: Time evolution and transfer of entanglement between an isolated atom and a Jaynes–Cummings atom. J. Phys. B At. Mol. Opt. Phys. 40, 3401–3411 (2007)
Jiang, L.N., Zhang, J.L., Ma, J., Yu, S.Y., Han, Q., Li, B.: Entanglement dynamics between two atoms within different W-like initial states. Int. J. Theor. Phys. 53, 942–951 (2014)
Man, Z.X., Xia, Y.J., An, N.B.: Entanglement dynamics for a six-qubit model in cavity QED. J. Phys. B At. Mol. Opt. Phys. 41, 155501 (2008)
Qiang, W.C., Zhang, L., Zhang, H.P.: Geometric quantum discord of a Jaynes–Cummings atom and an isolated atom. J. Phys. B At. Mol. Opt. Phys. 48, 245503 (2015)
Wang, D., Huang, A.J., Hoehn, R.D., Ming, F., Sun, W.Y., Shi, J.D., Ye, L., Kais, S.: Entropic uncertainty relations for Markovian and Non-Markovian processes under a structured bosonic reservoir. Sci. Rep. 7, 1066 (2017)
Sun, W.Y., Wang, D., Ding, Z.Y., Ye, L.: Recovering the lost steerability of quantum states within Non-Markovian environments by utilizing quantum partially collapsing measurements. arXiv:1709.05922v2 [quant-ph]
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)
Rungta, P., Buzék, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)
Pope, D.T., Milburn, G.J.: Multipartite entanglement and quantum state exchange. Phys. Rev. A 67, 052107 (2003)
Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)
Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)
Aolita, L.: Measuring multipartite concurrence with a single factorizable observable. Phys. Rev. Lett. 97, 050501 (2006)
Love, P.J., van den Brink, A., Smirnov, A., Amin, M., Grajcar, M., Ilichev, E., Izmalkov, A., Zagoskin, A.: A characterization of global entanglement. Quantum Inf. Process. 6, 187–195 (2007)
Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)
Huber, M., Mintert, F.: Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104, 210501 (2010)
Ma, Z.H., Chen, Z.H., Chen, J.L., Spengler, C., Gabriel, A., Huber, M.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325 (2011)
Chen, Z.H., Ma, Z.H., Chen, J.L., Severini, S.: Improved lower bounds on genuine-multipartite-entanglement concurrence. Phys. Rev. A 85, 062320 (2012)
Hashemi Rafsanjani, S.M., Huber, M., Broadbent, C.J., Eberly, J.H.: Genuinely multipartite concurrence of N-qubit X matrices. Phys. Rev. A 86, 062303 (2012)
Cornelio, M.F.: Multipartite monogamy of the concurrence. Phys. Rev. A 87, 032330 (2013)
Li, M., Fei, S.M., Li-Jost, X., Fan, H.: Genuine multipartite entanglement detection and lower bound of multipartite concurrence. Phys. Rev. A 92, 062338 (2015)
Majtey, A.P., Bouvrie, P.A., Valdés-Hernández, A., Plastino, A.R.: Multipartite concurrence for identical-fermion systems. Phys. Rev. A 93, 032335 (2016)
Sun, W.Y., Wang, D., Yang, J., Ye, L.: Enhancement of multipartite entanglement in an open system under non-inertial frames. Quantum Inf. Process. 16, 90 (2017)
Sun, W.Y., Wang, D., Shi, J.D., Ye, L.: Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs. Sci. Rep. 7, 39651 (2017)
Acknowledgements
We would like to thank the editor and kind referees for their invaluable suggestions, which improved the manuscript greatly. This work is supported in part by 20170938-SIP, IPN, Mexico and also supported partially by the CONACYT project under Grant No. 288856-CB-2016.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Qiang, WC., Sun, GH., Dong, Q. et al. Concurrence of three Jaynes–Cummings systems. Quantum Inf Process 17, 90 (2018). https://doi.org/10.1007/s11128-018-1851-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1851-8