Skip to main content
Log in

Concurrence of three Jaynes–Cummings systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We apply genuine multipartite concurrence to investigate entanglement properties of three Jaynes–Cummings systems. Three atoms are initially put in GHZ-like state and locally interact with three independent cavities, respectively. We present analytical concurrence expressions for various subsystems including three-atom, three-cavity and some atom-cavity mixed systems. We also examine the global system and illustrate the evolution of its concurrence. Except for the sudden death of entanglement, we find for some initial entanglement parameter \(\theta \), the concurrence of the global system may maintain unchanged in some time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vedral, V.: Modern Foundations of Quantum Optics. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  2. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)

    Article  Google Scholar 

  3. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  4. Yönaç, M., Yu, T., Eberly, J.H.: Sudden death of entanglement of two Jaynes–Cummings atoms. J. Phys. B At. Mol. Opt. Phys. 39, S621–S625 (2006)

    Article  Google Scholar 

  5. Yönaç, M., Yu, T., Eberly, J.H.: Pairwise concurrence dynamics: a four-qubit model. J. Phys. B At. Mol. Opt. Phys. 40, S45–S59 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. Groves, E., Clader, B.D., Eberly, J.H.: Jaynes–Cummings theory out of the box. J. Phys. B At. Mol. Opt. Phys. 46, 224005 (2013)

    Article  ADS  Google Scholar 

  7. Li, Z.J., Li, J.Q., Jin, Y.H., Nie, Y.H.: Time evolution and transfer of entanglement between an isolated atom and a Jaynes–Cummings atom. J. Phys. B At. Mol. Opt. Phys. 40, 3401–3411 (2007)

    Article  Google Scholar 

  8. Jiang, L.N., Zhang, J.L., Ma, J., Yu, S.Y., Han, Q., Li, B.: Entanglement dynamics between two atoms within different W-like initial states. Int. J. Theor. Phys. 53, 942–951 (2014)

    Article  MATH  Google Scholar 

  9. Man, Z.X., Xia, Y.J., An, N.B.: Entanglement dynamics for a six-qubit model in cavity QED. J. Phys. B At. Mol. Opt. Phys. 41, 155501 (2008)

    Article  ADS  Google Scholar 

  10. Qiang, W.C., Zhang, L., Zhang, H.P.: Geometric quantum discord of a Jaynes–Cummings atom and an isolated atom. J. Phys. B At. Mol. Opt. Phys. 48, 245503 (2015)

    Article  ADS  Google Scholar 

  11. Wang, D., Huang, A.J., Hoehn, R.D., Ming, F., Sun, W.Y., Shi, J.D., Ye, L., Kais, S.: Entropic uncertainty relations for Markovian and Non-Markovian processes under a structured bosonic reservoir. Sci. Rep. 7, 1066 (2017)

    Article  ADS  Google Scholar 

  12. Sun, W.Y., Wang, D., Ding, Z.Y., Ye, L.: Recovering the lost steerability of quantum states within Non-Markovian environments by utilizing quantum partially collapsing measurements. arXiv:1709.05922v2 [quant-ph]

  13. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  14. Rungta, P., Buzék, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  15. Pope, D.T., Milburn, G.J.: Multipartite entanglement and quantum state exchange. Phys. Rev. A 67, 052107 (2003)

    Article  ADS  Google Scholar 

  16. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)

    Article  ADS  Google Scholar 

  17. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Aolita, L.: Measuring multipartite concurrence with a single factorizable observable. Phys. Rev. Lett. 97, 050501 (2006)

    Article  ADS  Google Scholar 

  19. Love, P.J., van den Brink, A., Smirnov, A., Amin, M., Grajcar, M., Ilichev, E., Izmalkov, A., Zagoskin, A.: A characterization of global entanglement. Quantum Inf. Process. 6, 187–195 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)

    Article  ADS  Google Scholar 

  21. Huber, M., Mintert, F.: Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104, 210501 (2010)

    Article  ADS  Google Scholar 

  22. Ma, Z.H., Chen, Z.H., Chen, J.L., Spengler, C., Gabriel, A., Huber, M.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325 (2011)

    Article  ADS  Google Scholar 

  23. Chen, Z.H., Ma, Z.H., Chen, J.L., Severini, S.: Improved lower bounds on genuine-multipartite-entanglement concurrence. Phys. Rev. A 85, 062320 (2012)

    Article  ADS  Google Scholar 

  24. Hashemi Rafsanjani, S.M., Huber, M., Broadbent, C.J., Eberly, J.H.: Genuinely multipartite concurrence of N-qubit X matrices. Phys. Rev. A 86, 062303 (2012)

    Article  ADS  Google Scholar 

  25. Cornelio, M.F.: Multipartite monogamy of the concurrence. Phys. Rev. A 87, 032330 (2013)

    Article  ADS  Google Scholar 

  26. Li, M., Fei, S.M., Li-Jost, X., Fan, H.: Genuine multipartite entanglement detection and lower bound of multipartite concurrence. Phys. Rev. A 92, 062338 (2015)

    Article  ADS  Google Scholar 

  27. Majtey, A.P., Bouvrie, P.A., Valdés-Hernández, A., Plastino, A.R.: Multipartite concurrence for identical-fermion systems. Phys. Rev. A 93, 032335 (2016)

    Article  ADS  Google Scholar 

  28. Sun, W.Y., Wang, D., Yang, J., Ye, L.: Enhancement of multipartite entanglement in an open system under non-inertial frames. Quantum Inf. Process. 16, 90 (2017)

    Article  ADS  MATH  Google Scholar 

  29. Sun, W.Y., Wang, D., Shi, J.D., Ye, L.: Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs. Sci. Rep. 7, 39651 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor and kind referees for their invaluable suggestions, which improved the manuscript greatly. This work is supported in part by 20170938-SIP, IPN, Mexico and also supported partially by the CONACYT project under Grant No. 288856-CB-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Chao Qiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang, WC., Sun, GH., Dong, Q. et al. Concurrence of three Jaynes–Cummings systems. Quantum Inf Process 17, 90 (2018). https://doi.org/10.1007/s11128-018-1851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1851-8

Keywords

Navigation