Abstract
In this work, we demonstrate the improved data separation capabilities of the Multidimensional Input Quantum Perceptron (MDIQP), a fundamental cell for the construction of more complex Quantum Artificial Neural Networks (QANNs). This is done by using input controlled alterations of ancillary qubits in combination with phase estimation and learning algorithms. The MDIQP is capable of processing quantum information and classifying multidimensional data that may not be linearly separable, extending the capabilities of the classical perceptron. With this powerful component, we get much closer to the achievement of a feedforward multilayer QANN, which would be able to represent and classify arbitrary sets of data (both quantum and classical).








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings. Santa Fe, NM, pp. 124–134 (1994)
Simon, D.R.: On the power of quantum computation. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 116–123
Overall Technology Roadmap Characteristics. International Technology Roadmap for Semiconductors (2010). http://www.itrs2.net/itrs-reports.html
Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography, 1st edn. Springer, Berlin. ISBN 978-3-540-88702-7 (2009)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Los Altos (2005)
Wittek, P.: Quantum Machine Learning: What Quantum Computing Means to Data Mining. Academic Press, London (2014)
Hagan, M., Demuth, H., Beale, M.: Neural Network Design. PWS Publishing Company, Boston (1996)
Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge (1969)
Hopfield, J.J.: Artificial neural networks. IEEE Circuits Devices Mag. 4(5), 3–10 (1988)
Gallant, S.I.: Perceptron-based learning algorithms. IEEE Trans. Neural Netw. I(2), 179191 (1990)
Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314 (1989)
Lewenstein, M.: Quantum perceptrons. J. Mod. Opt. 41(12), 2491–2501 (1994)
Jones, J.A.: Quantum Information, Computation and Communication, 1st edn. Cambridge: Cambridge University Press. ISBN 978-1-107-01446-6 (2012)
Zhou, R.: Quantum competitive neural network. Int. J. Theor. Phys. 49, 110–119 (2010)
Sagheer, A., and Metwally, N.: Communication via quantum neural networks. In: The 2nd World Congress on Nature and Biologically Inspired Computing, NaBIC. IEEE, pp. 418–422 (2010)
Ventura, D., Martinez, T.: Quantum associative memory. Inf. Sci. 5124, 273–296 (2000)
Zhou, R., Qin, L., Jiang, N. (2006). Quantum perceptron network. In: The 16th International Conference on Artificial Neural Networks, ICANN , LNCS, vol. 4131, pp. 651–657 (2006)
Li, C., Li, S.: Learning algorithm and application of quantum BP neural networks based on universal quantum gates. J. Syst. Eng. Electron. 19(1), 167–174 (2008)
Kak, S.C.: Quantum neural computing. Adv. Imaging Electron. Phys. 94, 259–314 (1995)
Shafee, F.: Neural networks with quantum gated nodes. Eng. Appl. Artif. Intell. 20(4), 429–437 (2007)
De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and Applications. Wiley, London (2011)
Abdessaied, Nabila, Drechsler, R.: Reversible and Quantum Circuits: Optimization and Complexity Analysis. Springer, Berlin (2016)
Perumalla, K.S.: Introduction to Reversible Computing. CRC Press, Boca Raton (2013)
Schuld, M., Sinayskiy, I., Petruccione, F.: Simulating a perceptron on a quantum computer. Phys. Lett. A 379(7), 660–663 (2015)
Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a quantum neural network. Quantum Inf. Process. 13(11), 25672586 (2014)
Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation, vol. 47. American Mathematical Society, Providence (2002)
Sopena, J.M., Romero, E., Alquezar, R.: Neural networks with periodic and monotonic activation functions: a comparative study in classification problems. In: Ninth International Conference on Artificial Neural Networks, 1999, ICANN 99 (Conference Publications No. 470), vol. 1. IET (1999)
Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Comm. 183, 17601772 (2012)
Poggio, T., Bizzi, E.: Generalization in vision and motor control. Nature 431(7010), 768 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yamamoto, A.Y., Sundqvist, K.M., Li, P. et al. Simulation of a Multidimensional Input Quantum Perceptron. Quantum Inf Process 17, 128 (2018). https://doi.org/10.1007/s11128-018-1858-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1858-1