Skip to main content
Log in

Bipartite non-classical correlations for a lossy two connected qubit–cavity systems: trace distance discord and Bell’s non-locality

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, some non-classical correlations are investigated for bipartite partitions of two qubits trapped in two spatially separated cavities connected by an optical fiber. The results show that the trace distance discord and Bell’s non-locality introduce other quantum correlations beyond the entanglement. Moreover, the correlation functions of the trace distance discord and the Bell’s non-locality are very sensitive to the initial correlations, the coupling strengths, and the dissipation rates of the cavities. The fluctuations of the correlation functions between their initial values and gained (loss) values appear due to the unitary evolution of the system. These fluctuations depend on the chosen initial correlations between the two subsystems. The maximal violations of Bell’s inequality occur when the logarithmic negativity and the trace distance discord reach certain values. It is shown that the robustness of the non-classical correlations, against the dissipation rates of the cavities, depends on the bipartite partitions reduced density matrices of the system, and is also greatly enhanced by choosing appropriate coupling strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vedral, V.: Quantum entanglement. Nat. Phys. 10, 256 (2014)

    Article  MATH  Google Scholar 

  2. Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  5. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899–6905 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  7. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  8. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Huang, Z.M., Qiu, D.W.: Geometric quantum discord under noisy environment. Quantum Inf. Process. 15, 1979 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Luo, S., Fu, S.: Measurement-Induced Nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  MATH  Google Scholar 

  11. Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)

    Article  ADS  Google Scholar 

  12. Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  13. Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)

    Article  ADS  Google Scholar 

  14. Paula, F.M., Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  15. Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)

    Article  ADS  Google Scholar 

  16. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Nakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)

    Article  ADS  Google Scholar 

  18. Huang, Z.M., Qiu, D.W., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)

    Article  ADS  MATH  Google Scholar 

  20. Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)

    Article  ADS  Google Scholar 

  21. Huang, Z.M., Situ, H.Z.: Quantum coherence and correlation in spin models with Dzyaloshinskii–Moriya interaction. Int. J. Theor. Phys. 56, 2178 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction. Ann. Phys. 366, 32–44 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Mazzola, L., Bellomo, B., Lo-Franco, R., Compagno, G.: Connection among entanglement, mixedness, and nonlocality in a dynamical context. Phys. Rev. A 81, 052116 (2010)

    Article  ADS  Google Scholar 

  24. Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Bipartite non-local correlations in a double-quantum-dot excitonic system. J. Phys. A Math. Theor. 47, 335301 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bell, J.S.: On the einstein podolsky rosen paradox. Physics 1, 195 (1964)

    Article  Google Scholar 

  26. Acin, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  MATH  Google Scholar 

  27. Gisin, N., Thew, R.: Quantum communication. Nat. Photon 1, 165 (2007)

    Article  ADS  Google Scholar 

  28. Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  29. Paternostro, M., Kim, M.S., Palma, G.M.: Non-local quantum gates: a cavity-quantum-electrodynamics implementation. J. Mod. Opt. 50, 2075–2094 (2003)

    Article  ADS  MATH  Google Scholar 

  30. Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242 (1997)

    Article  ADS  Google Scholar 

  31. Clark, S., Peng, A., Gu, M., Parkins, S.: Unconditional preparation of entanglement between atoms in cascaded optical cavities. Phys. Rev. Lett. 91, 177901 (2003)

    Article  ADS  Google Scholar 

  32. Duan, L.-M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)

    Article  ADS  Google Scholar 

  33. Cho, J., Lee, H.-W.: Generation of atomic cluster states through the cavity input-output process. Phys. Rev. Lett. 95, 160501 (2005)

    Article  ADS  Google Scholar 

  34. Serafini, A., Mancini, S., Bose, S.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. Lett. 96, 010503 (2006)

    Article  ADS  Google Scholar 

  35. Mohamed, A.-B.A., Hessian, H.A., Hashem, M.: Effect of the phase damping of two qubits on both the quantum discord and non-local correlation. Optik 126, 3432–3436 (2015)

    Article  ADS  Google Scholar 

  36. Situ, H.Z., Hu, X.Y.: Dynamics of relative entropy of coherence under Markovian channels. Quantum Inf. Process. 15, 4649 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Su, S.L., Shao, X.Q., Guo, Q., Cheng, L.Y., Wang, H.F., Zhang, S.: Preparation of entanglement between atoms in spatially separated cavities via fiber loss. Eur. Phys. J. D 69, 123 (2015)

    Article  ADS  Google Scholar 

  38. Zheng, B., Shen, L.-T., Chen, M.-F.: Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities. Quantum Inf. Process. 15, 2181–2191 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D., Reichel, J.: Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)

    Article  ADS  Google Scholar 

  40. Lettner, M., Mücke, M., Riedl, S., Vo, C., Hahn, C., Baur, S., Bochmann, J., Ritter, S., Dürr, S., Rempe, G.: Remote entanglement between a single atom and a Bose–Einstein condensate. Phys. Rev. Lett. 106, 210503 (2011)

    Article  ADS  Google Scholar 

  41. Muller, A., Flagg, E.B., Metcalfe, M., Lawall, J., Solomon, G.S.: Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity. Appl. Phys. Lett. 95, 173101 (2009)

    Article  ADS  Google Scholar 

  42. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)

    MATH  Google Scholar 

  43. Di Fidio, C., Vogel, W., Khanbekyan, M., Welsch, D.-G.: Photon emission by an atom in a lossy cavity. Phys. Rev. A 77, 043822 (2008)

    Article  ADS  Google Scholar 

  44. Man, Z.X., Xia, Y.J., An, N.B.: Quantum dissonance induced by a thermal field and its dynamics in dissipative systems. Eur. Phys. J. D 64, 521 (2011)

    Article  ADS  Google Scholar 

  45. Torres, J.M.: Closed-form solution of Lindblad master equations without gain. Phys. Rev. A 89, 052133 (2014)

    Article  ADS  Google Scholar 

  46. Mohamed, A.-B., Eleuch, H.: Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: entanglement and non-Gaussanity. Eur. Phys. J. D 69, 191 (2015)

    Article  ADS  Google Scholar 

  47. Mohamed, A.-B., Eleuch, H.: Quantum correlation control for two semiconductor microcavities connected by an optical fiber. Phys. Scr. 92, 065101 (2017)

    Article  ADS  Google Scholar 

  48. Ghasemi, M., Tavassoly, M.K., Nourmandipour, A.: Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method. Eur. Phys. J. Plus 132, 531 (2017)

    Article  Google Scholar 

  49. de Assis, R.J., Sales, J.S., de Almeida, N.G.: Unambiguous discrimination of nonorthogonal quantum states in cavity QED. Phys. Lett. A 381, 2927 (2017)

    Article  ADS  Google Scholar 

  50. Vidal, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  51. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  52. Metwally, N.: Single and double changes of entanglement. J. Opt. Soc. 31, 691 (2014)

    Article  ADS  Google Scholar 

  53. Ann, K., Jaeger, G.: Finite-time destruction of entanglement and non-locality by environmental influences. Found Phys. 39, 790–828 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Ann, K., Jaeger, G.: Disentanglement and decoherence in two-spin and three-spin systems under dephasing. Phys. Rev. B 75, 115307 (2007)

    Article  ADS  Google Scholar 

  55. Ficek, Z., Tanaś, R.: Delayed sudden birth of entanglement. Phys. Rev. A 77, 054301 (2008)

    Article  ADS  MATH  Google Scholar 

  56. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–60 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Mohamed, A.-B.A.: Thermal effect on the generated quantum correlation between two superconducting qubits. Laser Phys. Lett. 13, 085202 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the referees and the associate editor for their important remarks which have helped him to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Baset A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, AB.A. Bipartite non-classical correlations for a lossy two connected qubit–cavity systems: trace distance discord and Bell’s non-locality. Quantum Inf Process 17, 96 (2018). https://doi.org/10.1007/s11128-018-1865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1865-2

Keywords

Navigation