Abstract
Two quantum correlations Q and \(Q_\mathcal P\) for \((m+n)\)-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all \((m+n)\)-mode Gaussian states with zero quantum correlations are product states. Generally, \(Q\ge Q_{\mathcal P}\), but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-018-1866-1/MediaObjects/11128_2018_1866_Fig1_HTML.gif)
Similar content being viewed by others
References
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)
Ollivier, H., Zurek, W .H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)
Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)
Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)
Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)
Guo, Y., Hou, J.-C.: Local channels preserving the states without measurement-induced nonlocality. J. Phys. A Math. Theor. 46, 325301 (2013)
Guo, Y., Hou, J.-C.: A class of separable quantum states. J. Phys. A Math. Theor. 45, 505303 (2012)
Mista Jr., L., Tatham, R., Girolami, D., Korolkova, N., Adesso, G.: Measurement-induced disturbances and nonclassical correlations of Gaussian states. Phys. Rev. A 83, 042325 (2011)
Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)
Adesso, G., Datta, A.: Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105, 030501 (2010)
Su, X.-L.: Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull. 59(11), 1083–1090 (2014)
Adesso, G., Girolami, D.: Gaussian geometric discord. Int. J. Quantum Inf. 9, 1773–1786 (2011)
Liu, D., Zhao, X., Long, G.-L.: Multiple entropy measures for multi-particle pure quantum state. Commun. Theor. Phys. 54, 825 (2010)
Cao, Y., Li, H., Long, G.-L.: Entanglement of linear cluster states in terms of averaged entropies. Chin. Sci. Bull. 58, 48–52 (2013)
Guo, Y., Li, X.-L., Li, B., Fan, H.: Quantum correlation induced by the average distance between the reduced states. Int. J. Theor. Phys. 54(6), 2022–2030 (2015)
Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)
Wang, X.-B., Hiroshima, T., Tomita, A., Hayashi, M.: Quantum information with Gaussian states. Phys. Rep. 448, 1–111 (2007)
Anders, J.: Estimating the degree of entanglement of unknown Gaussian states. arXiv:quant-ph/0610263 (2006)
Giedke, G., Cirac, J.I.: Characterization of Gaussian operations and distillation of Gaussian states. Phys. Rev. A 66, 032316 (2002)
Scutaru, H.: Fidelity for displaced squeezed states and the oscillator semigroup. J. Phys. A Math. Gen. 31(15), 3659–3663 (1998)
Xu, J.: Which bipartite states are lazy. Int. J. Theor. Phys. 54, 860 (2015)
Bowen, W.P., Schnabel, R., Lam, P.K., Ralph, T.C.: Experimental characterization of continuous-variable entanglement. Phys. Rev. A 69, 012304 (2004)
Giedke, G., Cirac, J.I.: Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox. Phys. Rev. A 80, 032112 (2009)
Acknowledgements
The authors thank all referees for their many helpful comments. This work is partially supported by Natural Science Foundation of China (11671006, 11671294) and Outstanding Youth Foundation of Shanxi Province (201701D211001).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ma, R., Hou, J., Qi, X. et al. Quantum correlations for bipartite continuous-variable systems. Quantum Inf Process 17, 98 (2018). https://doi.org/10.1007/s11128-018-1866-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1866-1