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Quatnum coherence behaviors of fermionic system in non-inertial frame
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In this paper, we analyse the quantum coherence behaviors of a single qubit in the relativistic
regime beyond the single-mode approximation. Firstly, we investigate the freezing condition of
quantum coherence in fermionic system. We also study the quantum coherence tradeoff between
particle and antiparticle sector. It is found that there exists quantum coherence transfer between
particle and antiparticle sector, but the coherence lost in particle sector is not entirely compensated
by the coherence generation of antiparticle sector. Besides, we emphatically discuss the cohering
power and decohering power of Unruh channel with respect to the computational basis. It is shown
that cohering power is vanishing and decohering power is dependent of the choice of Unruh mode
and acceleration. Finally, We compare the behaviors of quantum coherence with geometric quantum
discord and entanglement in relativistic setup. Our results show that this quantifiers in two region
converge at infinite acceleration limit, which implies that this measures become independent of
Unruh modes beyond the single-mode approximations. It is also demonstrated that the robustness
of quantum coherence and geometric quantum discord are better than entanglement under the
influence of acceleration, since entanglement undergoes sudden death.

I. INTRODUCTION

Relativistic quantum information [1–5] has attracted much attention in recent years, which is the integration of
relativity theory, quantum field theory, and quantum information theory. It is believed that the study of quantum
correlation in a relativistic setting is not only helpful in understanding some key questions in quantum information
theory, but also plays an important role in the study of quantum effects of black holes [6–9]. Many authors [10–18]
have studied the behaviors of entanglement and discord-type quantum correlations in fermionic system of non-inertial
frames based on single-mode approximation (SMA). Recently, Some papers [19–24] consider the behaviors of quantum
correlations of fermionic system in accelerated frame beyond SMA. On the other hand, Quantum coherence resulting
from quantum state superpositon is a fundamentally important physical resource, which plays a key role in quantum
physics and quantum information processing, such as quantum optics [25–31], thermodynamics [32–36], quantum
information [37, 38], solid state physics [39, 40], and quantum biology [41–45].
Despite the prominent role of quantum coherence, only very recently has a theoretic framework to measure coherence

for quantum states been developed [38, 46–51]. Ref. [38] proposed the rigorous characterization of coherence in the
framework of resource theory which is based on identifying the set of incoherent states and a class of incoherent
operations. Based on such a framework, one can define suitable measures, including the relative entropy of coherence
and l1 norm of coherence [38], and the skew information [47]. According to resource theory, entanglement and other
types of quantum correlations beyond entanglement, for instance, quantum discord, were discovered as key quantum
resources. Resources can often be traded for another. Recently, some papers [50, 52, 53] explored the relation between
coherence and entanglement. Some authors [52, 54–56] studied the link between coherence and discord-type quantum
correlation. Very recently, some work [57–59] introduced and investigated the cohering and decohering power of
quantum channels. The cohering power and decohering power of a quantum channel are the power of a quantum
channel creating or destroying the coherence of input quantum states, which is a fundamental concept within the
framework of the resource theory of coherence.
In this paper, we explore the quantum coherence behavior for one party fermionic system in accelerated frame

beyond SMA. As mentioned above, quantum coherence as a crucial quantum resource is closely connected with other
nonclassical correlation resource, thus we will compare the dynamics of quantum coherence in an accelerated frame
with entanglement and geometric quantum discord. We find that quantum coherence, geometric quantum discord and
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FIG. 1: Rindler space-time diagram: Bob is in the uniformly accelerated frame. Two regions I and II are causally disconnected.

entanglement have different behavior with other nonclassical correlation [19, 21, 23, 24]. Actually, the acceleration of
observers can be treated as certain “environmental decoherence” and the effect will degrade the quantum correlation
from the perspective of accelerated observers [10]. Therefore, Unruh effect can be regarded as a kind of decoherence
channel, and we will study cohering and decohering power in non-inertial frame beyond SMA. We believe that such
explorations will deepen our understanding of quantum coherence in relativistic systems and is of significance from
the point of view of both fundamental theory and practical applications.
The organization of this paper is as follows. Sec.II introduces fermionic system in noninertial frame beyond SMA.

In Sec.III, we recall some concepts about quantum coherence and quantum correlation. Sec.IV studies the behaviors
of quantum coherence, cohering and decohering power in an accelerated frame. A brief conclusion is given in the last
sections.

II. NONINERTIAL FRAME

An observer with constant proper acceleration is best described Rindler coordinate (τ, ζ, y, z), instead of the
Minkowski coordinate (t, x, y, z). Rindler coordinate and Minkowski coordinate have the following relation:

ct = ζ sinh(
aτ

c
), x = ζ cosh(

aτ

c
), (1)

where the curve ζ = 1/a is the world line of a uniformly accelerated observer, and a is equal to the proper acceleration
of uniformly accelerated observer [21]. c is the velocity of light. For fixed ζ, the coordinate can describe hyperbolic
trajectories in spacetime (see Fig. 1). In fact, Eq. (1) only covers region I. Region II is covered by ct = −ζ sinh(aτc ), x =
−ζ cosh(aτc ). The other two regions can be covered with ct = ±ζ cosh(aτc ), x = ±ζ sinh(aτc ).
The Dirac field φ satisfies equation {iγµ((∂µ − Γµ) +m} = 0, where γµ are the Dirac-Pauli matrices and Γµ are

the spin connection coefficients. In terms of Minkowski modes and Rindler modes, the Dirac field is given by

φ = NM

∑

i

(ai,Mυ+

i,M + b†i,Mυ−
i,M )

= NR

∑

j

(aj,Iυ
+

j,I + b†j,Iυ
−
j,I + aj,IIυ

+

j,II + b†j,IIυ
−
j,II), (2)

where NM and NR are normalization constants. υ±
i,M denotes positive and negative energy solutions of the Dirac

equation in Minkowski coordinate, which can be gotten with respect to the Killing vector field in Minkowski spacetime.
υ±
i,I and υ±

i,II are the positive and negative energy solutions of the Dirac equation in Rindler coordinate, with respect

to the timelike Killing vector field in regions I and II. a†i,σ(ai,σ) and b†i,σ(bi,σ) are the the creation (annihilation)

operators for the positive and negative energy solutions (particle and antiparticle), where σ = {M, I, II}, and satisfy
the usual anticommutation rule

{ai,σ, a†j,σ′} = {bi,σ, b†j,σ′} = δijδσσ′ . (3)

Linear combinations of Rindler modes constructing Unruh modes, each Unruh mode can be transformed to a
monochromatic Rindler mode. This transformation is given by [19]:

Ai,R/L ≡ cos riai,I/II − sin rib
†
i,II/I (4)
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where cos ri = (e
−2πΩc

a + 1)−1/2, and Ω denotes the Rindler frequency. However, a more general relation can be
obtained,

a†i,U =qL(A
†
i,L ⊗ IR) + qR(IL ⊗A†

i,R),

q2L + q2R = 1. (5)

We assume that qL and qR are real numbers. By the above equation, one can obtain Unruh mode beyond the
single-mode approximation. The case qR = 1 corresponds to the single-mode approximation.
Grassman scalars field, which is an anticommuting field with only one degree of freedom and is the the simplest

case of Dirac field, preserves the fundamental Dirac characteristics. Using the above relations, Unruh vacuum for the
Grassman scalar field is given by

|0Ω〉U =cos2 rΩ|0000〉Ω − sin rΩ cos rΩ|0011〉Ω
+ sin rΩ cos rΩ|1100〉Ω − sin2 rΩ|1111〉Ω, (6)

where the modes labeled with U are Grassman-Unruh modes. Here, we introduce the notation |pqmn〉Ω ≡
|pΩ〉+I |qΩ〉−II |mΩ〉−I |nΩ〉+II . The one-particle state is given by

|1Ω〉+U =qR(cos rΩ|1000〉Ω − sin rΩ|1011〉Ω)
+ qL(sin rΩ|1101〉Ω + cos rΩ|0001〉Ω), (7)

|1Ω〉−U =qL(cos rΩ|0100〉Ω − sin rΩ|0111〉Ω)
+ qR(sin rΩ|1110〉Ω + cos rΩ|0010〉Ω). (8)

The states labeled by Ω are Unruh states, and we will omit the label Ω for simplicity in the rest of the present paper.
Here, we will apply the physical structure suggested by Ref. [22, 23] that the ordering of the fermionic system should
be rearranged by the sequence of particles and antiparticles in the separated region.

III. BASIC DEFINITIONS

Baumgratz et al. [38] introduced a rigorous framework for the quantification of coherence and identified easily
computable measures of coherence. By fixing a particular basis {|i〉} in the d-dimensional Hilbert space, all density
operators of the form

δ̂ =

d
∑

i=1

pi|i〉〈i| (9)

are called incoherent states, and we label this set of quantum states by I. A quantum operation ρ → ∑

n KnρK
†
n is

called an incoherent operation if the condition KnIK†
n ⊂ I is satisfied for all n. A reasonable measure of quantum

coherence C should satisfy the following conditions in line with the resource theory [38]:

1. C(ρ) = 0 iff ρ ∈ I.
2. Monotonicity under non-selective incoherent completely positive and trace preserving (ICPTP) maps: C(ρ) ≥

C(ΦICPTP(ρ)), where ΦICPTP(ρ) =
∑

n KnρK
†
n and {Kn} is a set of Kraus operators with

∑

n K
†
nKn = I and

KnIK†
n ⊂ I.

3. Monotonicity under selective measurements on average: C(ρ) ≥ ∑

n pnC(ρn), where ρn = KnρK
†
n/pn, pn =

Tr(KnρK
†
n) for all {Kn} with

∑

n K
†
nKn = I and KnIK†

n ⊂ I
4. Convexity:

∑

n pnC(ρn) ≥ C(
∑

n pnρn) for any set of states {ρn} with probability pn ≥ 0 and
∑

n pn = 1.

There are several coherence measures that satisfy the above conditions, such as the relative entropy of coherence and
l1 norm of coherence [38].
Coherence properties of a quantum state are usually attributed to the off-diagonal elements of its density matrix

with respect to a selected reference basis. l1 norm of coherence is a very intuitive quantification of coherence related
to the off-diagonal elements of the considered quantum state, given by

Cl1(ρ) =
∑

i6=j

|ρi,j |. (10)
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The cohering power of a channel is the maximum amount of coherence that it creates when acting on completely
incoherent states. For a quantum channel E , the cohering power is defined as [57]

Ck(E) = max
ρ∈I

{Ck(E(ρ)) − Ck(ρ)} = max
ρ∈I

Ck(E(ρ)), (11)

where C is any coherence measure and k denotes the observable basis. For a qubit channel E , cohering power can be
calculated by [57]

Ck(E) = max{FE(k,k), FE (−k,k)}, (12)

where

FE(m,k) = (1 −
√

1−m′2)[1− (
m

′

m′ · k)
2], (13)

where m
′ is a Bloch vector of E(ρ) and m′ is the length of vector m′, and ρ is a pure input state of a qubit channel

E , i.e., ρ = 1

2
(I +m · σ) with m being unit real vector and σ = {σ1, σ2, σ3} denoting the vector for Pauli matrices. k

is a unit real vector standing for the reference basis { 1

2
(I + k · σ), 1

2
(I − k · σ)}.

The decohering power of a channel is the maximum reduce of coherence caused by quantum channel acting on the
maximally coherent states. The decohering power of a channel is defined as

Dk(E) = max
ρ∈M

{Ck(ρ)− Ck(E(ρ))}, (14)

where M is the set of maximally coherent states. For a quantum channel E , decohering power can be evaluated
through [57]

Dk(E) = 1−min
m

FE (m,k). (15)

The input state is an equatorial pure state with respect to the direction k, i.e., m⊥k. In other words, the input state
is of the form |φ〉 = 1√

2
(|k+〉+ eiϕ|k−〉), where |k±〉 are two eigenvectors of σ · k.

Quantum correlation is the non-classical correlation beyond entanglement. It’s also an important resource in most
quantum information processing tasks. One kind of quantum correlation measure called quantum discord, which
was first proposed by Ollivier and Zurek [60] and by Henderson and Vedral [61], has received considerable attention.
Calculating the quantum discord based on a numerical optimization procedure is a hard work. The difficulty of
calculating the quantum discord led Dakić, et al. [62] to introduce a geometric quantum discord. The geometric
quantum discord of a bipartite quantum state ρ in Hilbert space HA ⊗HB is defined [62, 63] as

DG(ρ) = min
ρc∈Ω0

‖ρ− ρc‖22, (16)

where ‖X‖2 =
√

Tr(X†X) denotes the Hilbert-Schmidt norm and Ω0 is the set of zero-discord states (classical-
quantum states, given by ρc =

∑

pk|k〉〈k| ⊗ ρk). An arbitrary two-qubit state can be represented by

ρ =
1

4
(I ⊗ I +

3
∑

i=1

xiσi ⊗ I +

3
∑

i

I ⊗ yiσi +

3
∑

i,j=1

tijσi ⊗ σj), (17)

with xi = Tr(ρσi ⊗ I), yi = Tr(ρI ⊗ σi), tij = Tr(ρσi ⊗ σj) being real parameters, and σi being Pauli matrices.
According to the above equation, geometric quantum discord can be calculated by [62, 63]

DG(ρ) =
1

4
(‖x‖2 + ‖T ‖22 − λmax), (18)

where x = (x1, x2, x3)
t is a column vector, ‖x‖2 =

∑

i x
2
i , T = (tij) is a matrix, and λmax is the largest eigenvalue of

the matrix xx
t + TT t.

Actually, there is an alternative concise calculating method of geometric quantum discord, reading [64]

DG(ρ) =
1

4
(
∑

i

λ2
i −max

i
λ2
i ), (19)

with λi being the singular values of the matrix T ′ = (x, T ), a 3× 4 matrix.
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As we know, entanglement plays a central role in quantum information theory, which contains correlations that
do not have a classical counterpart. The entanglement of formation is a monotonically increasing function of the
concurrence [65]. For two-qubit mixed states, the concurrence is defined as

CE(ρ) =max{0, 2max{
√

λ1,
√

λ2,
√

λ3,
√

λ4}
−
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (20)

where λi are the eigenvalues of ρρ̃ in decreasing order, and ρ̃ = (σ2⊗σ2)ρ
∗(σ2⊗σ2) with ρ∗ as the complex conjugated

density matrix.

IV. BEHAVIORS OF QUANTUM COHERENCE IN ACCELERATED FRAME

Quantum coherence can exhibit the most essential quantum feature in a single system. In this section, we study
the behavior of quantum coherence for one party system in the Grassmann scalar field, which is very useful to study
the general features of quantum correlation in fermionic fields [19, 20, 22–24]. We suppose that Bob travels with a
uniform acceleration. Then, the initial fermionic state of Bob can be described as

|φ+〉 = cos(θ)|0〉U + sin(θ)|1+〉U , (21)

where 0 ≤ θ ≤ π
4
. When θ = π

4
, |φ+〉 become the maximally coherent state.

Suppose that Bob’s detector is only sensitive to particle. As is depicted in Fig. 1, since two regions I and II are
causally disconnected, according to Eq. (6) and Eq. (7), by tracing over region II and the antiparticle in region I, the
state can be obtained beyond the single-mode approximation

ρφ
+

B+

I

=(−q2R cos2 θ cos2 r + cos2 r)|0〉〈0|

+
qR
2

sin 2θ cos r|0〉〈1|+ qR
2

sin 2θ cos r|1〉〈0|

+ (q2R cos2 θ cos2 r + sin2 r)|1〉〈1|. (22)

According to Eq. (10), l1 norm of coherence can be obtained

Cl1(ρ
φ+

B+

I

) = qR sin 2θ cos r. (23)

We are particularly interested in whether the coherence of the final state can be frozen under some initial or mode

approximation conditions. Such conditions can be obtained by differentiating Cl1(ρ
φ+

B+

I

) with respect to the acceleration

parameter r. That is, the coherence is unaffected by acceleration if the differential is zero. the r derivative of the l1
norm can be calculated as follow

∂rCl1(ρ
φ+

B+

I

) = −qR sin 2θ sin r, (24)

which equals zero only for sin 2θ = 0 or qR = 0. Thus the freezing conditions for l1 norm of coherence are that initial

state should be an incoherence state or qR = 0, i.e., qL = 1. Actually, when qR = 0, ρφ
+

B+

I

= cos2 r|0〉〈0|+ sin2 r|1〉〈1|,
which is an incoherence state.
Now assume that Bob’s detector is only sensitive to antiparticle. By tracing over region II and the particle in region

I, the state is given as

ρφ
+

B−

I

=(q2L cos2 θ sin2 r + cos2 r)|0〉〈0|

− qL
2

sin 2θ sin r|0〉〈1| − qL
2

sin 2θ sin r|1〉〈0|

+ (−q2L cos2 θ sin2 r + sin2 r)|1〉〈1|. (25)

l1 norm of coherence is calculated as follow

Cl1(ρ
φ+

B−

I

) = qL sin 2θ sin r. (26)
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(a) (b)

FIG. 2: (a) l1 norm of coherence for particle in region I and (b) l1 norm of coherence for antiparticle in region I as a function
of acceleration r and parameter qR with θ = π

4
.

Analogously, by taking the r derivative of Cl1(ρ
φ+

B−

I

), we can obtain the coherence freezing conditions that initial state

should be an incoherence state and qL = 0(qR = 1) corresponding to the single-mode approximation. When qR = 0,
we get the same incoherent state cos2 r|0〉〈0|+ sin2 r|1〉〈1|.
Fig. 2 depicts the l1 norm of coherence for particle state ρφ

+

B+

I

and antiparticle ρφ
+

B−

I

in region I. From Fig. 2, we can

observe that the coherence of particle sector grows monotonically as the growth of the parameter qR and degrades as
the acceleration r increases. However, the coherence in antiparticle sector shows reverse variation. Therefore, there
is coherence transfer between particle sector and antiparticle sector, but the coherence lost in particle sector is not
completely compensated by the coherence creation of antiparticle sector. When qR = 1 and r = 0, the coherence of
particle sector reaches the maximal value 1. When qR = 0 (or qL = 1) and r = π

4
(infinite-acceleration limit), the

maximal coherence in antiparticle sector is
√
2

2
. It is noted that when qR = 0 and r = 0, particle and antiparticle

sector have vanishing coherence. The equal critical points of coherence in two sectors can be localized by the following
function

tan r =
qR
qL

=
qR

√

1− q2R
, (27)

which means when acceleration r and parameter qR satisfy the above relation, the coherence in particle sector equals
the lost coherence to antiparticle sector.
As discussed above, coherence decays in particle sector and grows in anitparticle sector with increase of acceleration.

Hence now, we investigate the cohering power and decohering power in accelerated frame. For simplicity, in the
following discussion, we focus on our analysis with respect to the computational basis (z basis), namely, k = (0, 0, 1)t.
We fist check the cohering power and decohering power in particle sector of region I. According to Eq. (12), the

input pure states are represented as ρ = 1

2
(I + σ3) and ρ = 1

2
(I − σ3), respectively. Accordingly, the output states of

Unruh channel are EU (ρ) = cos2 r|0〉〈0|+ sin2 r|1〉〈1| and EU (ρ) = q2L cos2 r|0〉〈0|+ (q2L sin2 r + q2R)|1〉〈1|, respectively,
both of which are incoherent states. By definition, we have

Cz(EU ) = 0. (28)

Next, let us investigate the decohering power of Unruh channel in particle sector. We can suppose that the input
pure state is |φ〉 = 1√

2
(|0〉+ eiϕ|1〉) . After through the Unruh channel, we have EU (|φ〉〈φ|) = 1

2
[I + qR cosϕ cos rσ1 +

qR sinϕ cos rσ2 + (q2L cos2 r − sin2 r)σ3]. By using Eq. (13) and Eq. (15), doing simplifications, we obtain

Dz(EU ) = 1−min
ϕ

{(1−
√
1−mv)[1− (q2L cos2 r − sin2 r)2

mv
]}

= 1− (1 −
√
1−mv)[1− (q2L cos2 r − sin2 r)2

mv
], (29)

where mv = q2R cos2 r + (q2L cos2 r − sin2 r)2.
We also easily find that the cohering power vanishes in antiparticle sector. With similar analysis, the decohering

power in antiparticle sector is given by

Dz(EU ) = 1− (1 −
√
1−mv)[1− (q2L sin2 r + cos 2r)2

mv
], (30)
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(a) (b)

FIG. 3: Decohering power in particle sector (a) and antiparticle sector (b) as a function of acceleration r and parameter qR.

where mv = q2L sin2 r + (q2L sin2 r + cos 2r)2.
Fig. 3 shows the decohering power variation with acceleration r and parameter qR. It is seen that decohering power

of Unruh channel in particle sector increases monotonically with the growth of parameter qR, and decreases with the
acceleration r increasing. However, in antiparticle sector, the decohering power has completely opposite changes.
Now, we analyse the dynamics of fermionic coherence in noninertial frames. Suppose that Bob’s detector can not

distinguish particle and antiparticle and the initial state is the maximally coherent state (taking θ = π
4
in Eq. (21)).

After tracing out the region II, the state in region I is described as

ρφ
+

BI
=
1

2
cos2 r(q2L + cos2 r)|00〉〈00| − qL

2
cos2 r sin r(|00〉〈01|+ |01〉〈00|)

+
qR
2

cos3 r(|00〉〈10|+ |10〉〈00|)− qLqR
4

sin 2r(|00〉〈11|+ |11〉〈00|)

+
1

2
cos2 r sin2 r|01〉〈01|+ qR

2
cos 2r sin2 r(|01〉〈11|+ |11〉〈01|)

− (
q2L
2

cos 2r +
1

2
cos4 r − cos2 r)|10〉〈10| − qL

2
sin3 r(|10〉〈11|+ |11〉〈10|)

+
1

2
sin2 r(sin2 r + q2R)|11〉〈11|. (31)

The density matrix of region II is obtained by tracing over region I:

ρφ
+

BII
=
1

2
cos2 r(q2R + cos2 r)|00〉〈00|+ qR

2
cos2 r sin r(|00〉〈10|+ |10〉〈00|)

+
qL
2

cos3 r(|00〉〈01|+ |01〉〈00|) + qLqR
4

sin 2r(|00〉〈11|+ |11〉〈00|)

+ (
q2L
2

cos 2r − 1

2
cos4 r +

1

2
)|01〉〈01|+ qR

2
sin3 r(|01〉〈11|+ |11〉〈01|)

+
1

2
cos2 r sin2 r|10〉〈10|+ qL

2
cos r sin2 r(|10〉〈11|+ |11〉〈10|)

+
1

2
sin2 r(sin2 r + q2L)|11〉〈11|. (32)

According to Eq. (10), l1 norm of coherence in region I and region II, respectively are

Cl1(ρ
φ+

BI
) = qLqR cos r sin r + qL sin r + qR cos r, (33)

Cl1(ρ
φ+

BII
) = qLqR cos r sin r + qL cos r + qR sin r. (34)

From the above equations, it is easily analysed that when qL = qR or sin r = cos r, that is qL = qR =
√
2

2
or r = π

4

(infinite acceleration), Cl1(ρ
φ+

BI
) = Cl1(ρ

φ+

BII
). As it can be seen from Fig. 4, the l1 norm of coherence of ρφ

+

BI
and

ρφ
+

BII
coincides at infinite acceleration, so does geometric quantum discord. We show that the behavior of quantum

coherence and geometric quantum discord allows one to obtain physical results, i.e., they converge in the infinite
acceleration [21, 23]. This implies that the fermionic coherence and fermionic discord become independent of qR

at infinite acceleration limit. Interestingly, ρφ
+

BI
and ρφ

+

BII
have the same entanglement behavior. It is obvious that
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(a) (b) (c)

FIG. 4: (a) Cl1(ρ
φ+

BI
) (blue) and Cl1(ρ

φ+

BII
) (red), (b) DG(ρ

φ+

BI
) (blue) and DG(ρ

φ+

BII
) (red), and (c) CE(ρ

φ+

BI
) as a function of

acceleration r at qR = 0.2, 0.5 and 0.8, respectively.

entanglement increases and then decreases with the acceleration increasing, and has sudden death, which is in distinct
contrast with the behaviors of quantum coherence and geometric quantum discord. The behaviors of this resource
measures are very different from the behaviors of quantum discord and entanglement investigated in other papers
[19, 21, 23, 24].
Then, we consider the initial fermionic state

|φ−〉 = cos(θ)|0〉U + sin(θ)|1−〉U . (35)

we trace over region II and the antiparticle in region I, and obtain

ρφ
−

B+

I

=cos2 r(1 − q2L cos2 θ)|0〉〈0|

+
qR
2

sin 2θ sin r|0〉〈1|+ qR
2

sin 2θ sin r|1〉〈0|

+ [q2L cos2 θ sin2 r − sin2 θ(cos2 r + 1)]|1〉〈1|. (36)

According to Eq. (10), l1 norm of coherence of ρφ
−

B+

I

can be obtained

Cl1(ρ
φ−

B+

I

) = qR sin 2θ sin r. (37)

We are also interested in the freezing condition of l1 norm. By differentiating Cl1(ρ
φ−

B+

I

) with respect to the acceleration

r, we get

∂rCl1(ρ
φ−

B+

I

) = qR sin 2θ cos r. (38)

We easily gain the freezing conditions for l1 norm of coherence that the initial state is an incoherent state or qR = 0,
i.e., qL = 1.
The density matrix of antiparticle state is obtained by tracing over region II and the particle in region I

ρφ
−

B−

I

=cos2 r(1 − q2L cos2 θ)|0〉〈0|

+
qL
2

sin 2θ sin r|0〉〈1|+ qL
2

sin 2θ sin r|1〉〈0|

+ (q2L cos2 θ cos2 r − sin2 r)|1〉〈1|. (39)

The l1 norm of coherence of ρφ
−

B−

I

is gained

Cl1(ρ
φ−

B−

I

) = qL sin 2θ cos r. (40)

Similarly, by taking the r derivative of Cl1(ρ
φ−

B−

I

), we can derive the coherence freezing conditions that initial state

should be an incoherent state and qL = 0 (qR = 1).
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(a) (b)

FIG. 5: (a) l1 norm of coherence for particle in region I and (b) l1 norm of coherence for antiparticle in region I as a function
of acceleration r and parameter qR with θ = π

4
.

(a) (b)

FIG. 6: Decohering power in particle sector (a) and antiparticle sector (b) as a function of acceleration r and parameter qR.

In Fig. 5, we plot the l1 norm of coherence for particle state ρφ
−

B+

I

and antiparticle ρφ
−

B−

I

in region I. From Fig. 5,

we can see that the coherence of particle sector grows monotonically as the growth of the parameter qR and rises as
the acceleration r increases, and the coherence in antiparticle sector is in the opposite trend simultaneously, which is
different from the case of state |φ+〉. Analogously, there is coherence transfer between particle sector and antiparticle
sector. When qR = 1 and r = π

4
(infinite-acceleration limit), the coherence of particle sector reaches the maximal

value
√
2

2
. When qR = 0 (or qL = 1) and r = 0 (r = π

4
), the maximal coherence in antiparticle sector are 1 (

√
2

2
). It

is noted that when qR = 1 and r = 0, the coherence of particle and antiparticle sector are zero. The equal critical
points of coherence in two sectors can be determined by the following equation

tan r =
qL
qR

=

√

1− q2R
qR

. (41)

Above equation implies when acceleration r and parameter qR meet above relation, the coherence in particle sector
equals the lost coherence.
With similar analysis, we can get cohering power Cz(EU ) = 0 in Unruh channel with respect to Eq. (6) and Eq. (8)

in particle sector. The decohering power in particle sector is given as

Dz(EU ) = 1− (1−
√
1−mv)[1− (−q2L sin2 r + cos2 r)2

mv
], (42)

where mv = q2R sin2 r + (−q2L sin2 r + cos2 r)2. The decohering power in particle sector is given by

Dz(EU ) = 1− (1 −
√
1−mv)[1− (−q2L cos2 r + cos 2r)2

mv
], (43)

where mv = q2L cos2 r + (−q2L cos2 r + cos 2r)2.
Fig. 6 shows the decohering power variation with acceleration r and parameter qR. It is seen that decohering power

of Unruh channel in particle sector increases with the growth of parameter qR, and grows up with the increasing
acceleration. However, in antiparticle sector, the decohering power has completely opposite trends.
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Interestingly, we find the behaviors of quantum coherence, geometric quantum discord and entanglement in Unruh
channel with respect to Eq. (6) and Eq. (8) resemble the behaviors in Unruh channel with respect to Eq. (6) and
Eq. (7), so here we omit the discussion of that case.

V. CONCLUSION

In this paper, we have studied the quantum coherence behavior of fermionic system in noninertial frame. We
find that the freezing conditions are that the initial state is prepared as an incoherence state, or that the Unruh
mode is single-mode approximation. We have analyzed the quantum coherence redistribution between particle and
antiparticle modes of Grassman scalars field. Meanwhile, we discuss the cohering power and decohering power of
Unruh channel. We discover that cohering power is trivial, but decohering power is dependent of the choice of Unruh
mode and acceleration, and different regions have different variations. Besides, we compare and analyse the dynamics
of quantum coherence, geometric quantum discord and entanglement. It is shown that these measures converge at
infinite acceleration limit, which means that they become independent of qR (Unruh modes) beyond single-mode
approximation and implies that the ordering structure employed can give rise to correct physical results. It is found
that entanglement has sudden death, therefore quantum coherence and geometric quantum discord are more robust
than entanglement in an accelerating system.
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