Abstract
In this paper, we propose a multi-party quantum key agreement protocol with five-qubit brown states and single-qubit measurements. Our multi-party protocol ensures each participant to contribute equally to the agreement key. Each party performs three single-qubit unitary operations on three qubits of each brown state. Finally, by measuring brown states and decoding the measurement results, all participants can negotiate a shared secret key without classical bits exchange between them. With the analysis of security, our protocol demonstrates that it can resist against both outsider and participant attacks. Compared with other schemes, it also possesses a higher information efficiency. In terms of physical operation, it requires single-qubit measurements only which weakens the hardware requirements of participant and has a better operating flexibility.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Dušek, M., Haderka, O., Hendrych, M., et al.: Quantum identification system. Phys. Rev. A 60, 149 (1999)
Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)
Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)
Gottesman D, Chuang I.: Quantum digital signatures. arXiv preprint quant-ph/0105032 (2001)
Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)
Wen, X., Tian, Y., Ji, L., et al.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001 (2010)
Yin, X.R., Ma, W.P., Liu, W.Y.: A blind quantum signature scheme with χ-type entangled states. Int. J. Theor. Phys. 51, 455–461 (2012)
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)
Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)
Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)
Chang, Y., Xu, C.X., Zhang, S.B., et al.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58, 4571–4576 (2013)
Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253, 15–20 (2005)
Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414 (1997)
Kent, A.: Quantum bit string commitment. Phys. Rev. Lett. 90, 237901 (2003)
Bennett, C.H., Brassard, G., Crépeau, C., et al.: Practical quantum oblivious transfer. In: Annual International Cryptology Conference. Springer, Berlin Heidelberg, pp. 351–366 (1991)
He, G.P., Wang, Z.D.: Oblivious transfer using quantum entanglement. Phys. Rev. A 73, 012331 (2006)
Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1 (2004)
Tsai, C., Hwang, T.: On quantum key agreement protocol. Technical Report, C-S-I-E, NCKU, Taiwan, ROC (2009)
Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on “quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50, 1793–1802 (2011)
Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)
Yan, T., Yan, F.L.: Quantum key distribution using four-level particles. Chin. Sci. Bull. 56, 24–28 (2011)
Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)
Huang, W., Wen, Q.Y., Liu, B., et al.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13, 649–663 (2014)
Shen, D.S., Ma, W.P., Wang, L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313–2324 (2014)
He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)
Sun, Z., Zhang, C., Wang, P., et al.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)
Sun, Z., Yu, J., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)
He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016)
Cai, B.B., Guo, G.D., Lin, S.: Multi-party quantum key agreement without entanglement. Int. J. Theor. Phys. 56, 1039 (2016)
Brown, I.D.K., Stepney, S., Sudbery, A., et al.: Searching for highly entangled multi-qubit states. J. Phys. A 38, 1119 (2005)
Gao, C., Ma, S.Y., Chen, W.L.: Controlled remote preparation via the brown state with no restriction. Int. J. Theor. Phys. 55, 2643–2652 (2016)
Chen, X.B., Ma, S.Y., Su, Y., et al.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653–1667 (2012)
Peng, J.: Tripartite operation sharing with five-qubit Brown state. Quantum Inf. Process. 15, 2465–2473 (2016)
Joy, D., Surendran, S.P., Sabir, M.: Efficient deterministic secure quantum communication protocols using multipartite entangled states. Quantum Inf. Process. 16, 157 (2017)
ho Hong, C., Heo, J., Jang, J.G., et al.: Quantum identity authentication with single photon. Quantum Inf. Process. 16, 236 (2017)
Ma, H., Huang, P., Bao, W., et al.: Continuous-variable quantum identity authentication based on quantum teleportation. Quantum Inf. Process. 15, 2605–2620 (2016)
Penghao, N., Yuan, C., Chong, L.: Quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. 55, 302–312 (2016)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Chun-Yan, L., Hong-Yu, Z., Yan, W., et al.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)
Deng, F.G., Long, G.L., Yan, W., et al.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)
Gisin, N., Fasel, S., Kraus, B., et al.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)
Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)
Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)
Zhang, Y., Li, Z., Zhao, Y., et al.: Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation. J. Phys. B At. Mol. Phys. 50, 035501 (2017)
Ottaviani, C., Mancini, S., Pirandola, S.: Gaussian two-mode attacks in one-way quantum cryptography. Phys. Rev. A 95, 052310 (2017)
Zhang, Y., Li, Z., Zhao, Y., et al.: Optimal two-mode attack against two-way continuous-variable quantum key distribution. CLEO: QELS Fundamental Science (Optical Society of America, 2016), JTu5A-19 (2016)
Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12, 685–697 (2013)
Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the brádler-dušek protocol. Quantum Inf. Comput. 7, 329 (2007)
Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)
Liu, B., Gao, F., Huang, W., et al.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)
Sun, Z., Zhang, C., Wang, B., et al.: Improvements on “Multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12, 3411–3420 (2013)
Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15, 2101–2111 (2016)
Xu, G.B., Wen, Q.Y., Gao, F., et al.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)
Acknowledgements
We gratefully acknowledge helpful discussions with X. Huang and L.L. Zhou in the late stage of this study. This work is supported by the National Natural Science Foundation of China (Nos. 61473199 and 61104002) and Youth Fund Project of the Natural Science Foundation of Jiangsu Province (No. BK20140305).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cai, T., Jiang, M. & Cao, G. Multi-party quantum key agreement with five-qubit brown states. Quantum Inf Process 17, 103 (2018). https://doi.org/10.1007/s11128-018-1871-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1871-4