Skip to main content
Log in

Multi-party quantum key agreement with five-qubit brown states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a multi-party quantum key agreement protocol with five-qubit brown states and single-qubit measurements. Our multi-party protocol ensures each participant to contribute equally to the agreement key. Each party performs three single-qubit unitary operations on three qubits of each brown state. Finally, by measuring brown states and decoding the measurement results, all participants can negotiate a shared secret key without classical bits exchange between them. With the analysis of security, our protocol demonstrates that it can resist against both outsider and participant attacks. Compared with other schemes, it also possesses a higher information efficiency. In terms of physical operation, it requires single-qubit measurements only which weakens the hardware requirements of participant and has a better operating flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Dušek, M., Haderka, O., Hendrych, M., et al.: Quantum identification system. Phys. Rev. A 60, 149 (1999)

    Article  ADS  Google Scholar 

  4. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)

    Article  ADS  Google Scholar 

  5. Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)

    Article  ADS  Google Scholar 

  6. Gottesman D, Chuang I.: Quantum digital signatures. arXiv preprint quant-ph/0105032 (2001)

  7. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wen, X., Tian, Y., Ji, L., et al.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001 (2010)

    Article  ADS  MATH  Google Scholar 

  9. Yin, X.R., Ma, W.P., Liu, W.Y.: A blind quantum signature scheme with χ-type entangled states. Int. J. Theor. Phys. 51, 455–461 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  12. Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. Chang, Y., Xu, C.X., Zhang, S.B., et al.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58, 4571–4576 (2013)

    Article  Google Scholar 

  14. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253, 15–20 (2005)

    Article  ADS  Google Scholar 

  15. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  16. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414 (1997)

    Article  ADS  Google Scholar 

  17. Kent, A.: Quantum bit string commitment. Phys. Rev. Lett. 90, 237901 (2003)

    Article  ADS  Google Scholar 

  18. Bennett, C.H., Brassard, G., Crépeau, C., et al.: Practical quantum oblivious transfer. In: Annual International Cryptology Conference. Springer, Berlin Heidelberg, pp. 351–366 (1991)

  19. He, G.P., Wang, Z.D.: Oblivious transfer using quantum entanglement. Phys. Rev. A 73, 012331 (2006)

    Article  ADS  Google Scholar 

  20. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1 (2004)

    Article  Google Scholar 

  21. Tsai, C., Hwang, T.: On quantum key agreement protocol. Technical Report, C-S-I-E, NCKU, Taiwan, ROC (2009)

  22. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on “quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  MATH  Google Scholar 

  23. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  24. Yan, T., Yan, F.L.: Quantum key distribution using four-level particles. Chin. Sci. Bull. 56, 24–28 (2011)

    Article  Google Scholar 

  25. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Huang, W., Wen, Q.Y., Liu, B., et al.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13, 649–663 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Shen, D.S., Ma, W.P., Wang, L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313–2324 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Sun, Z., Zhang, C., Wang, P., et al.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)

    Article  MATH  Google Scholar 

  30. Sun, Z., Yu, J., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Cai, B.B., Guo, G.D., Lin, S.: Multi-party quantum key agreement without entanglement. Int. J. Theor. Phys. 56, 1039 (2016)

    Article  MATH  Google Scholar 

  33. Brown, I.D.K., Stepney, S., Sudbery, A., et al.: Searching for highly entangled multi-qubit states. J. Phys. A 38, 1119 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Gao, C., Ma, S.Y., Chen, W.L.: Controlled remote preparation via the brown state with no restriction. Int. J. Theor. Phys. 55, 2643–2652 (2016)

    Article  MATH  Google Scholar 

  35. Chen, X.B., Ma, S.Y., Su, Y., et al.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653–1667 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Peng, J.: Tripartite operation sharing with five-qubit Brown state. Quantum Inf. Process. 15, 2465–2473 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Joy, D., Surendran, S.P., Sabir, M.: Efficient deterministic secure quantum communication protocols using multipartite entangled states. Quantum Inf. Process. 16, 157 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. ho Hong, C., Heo, J., Jang, J.G., et al.: Quantum identity authentication with single photon. Quantum Inf. Process. 16, 236 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Ma, H., Huang, P., Bao, W., et al.: Continuous-variable quantum identity authentication based on quantum teleportation. Quantum Inf. Process. 15, 2605–2620 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Penghao, N., Yuan, C., Chong, L.: Quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. 55, 302–312 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  42. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  43. Chun-Yan, L., Hong-Yu, Z., Yan, W., et al.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  44. Deng, F.G., Long, G.L., Yan, W., et al.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)

    Article  ADS  Google Scholar 

  45. Gisin, N., Fasel, S., Kraus, B., et al.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  46. Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  47. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  48. Zhang, Y., Li, Z., Zhao, Y., et al.: Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation. J. Phys. B At. Mol. Phys. 50, 035501 (2017)

    Article  ADS  Google Scholar 

  49. Ottaviani, C., Mancini, S., Pirandola, S.: Gaussian two-mode attacks in one-way quantum cryptography. Phys. Rev. A 95, 052310 (2017)

    Article  ADS  Google Scholar 

  50. Zhang, Y., Li, Z., Zhao, Y., et al.: Optimal two-mode attack against two-way continuous-variable quantum key distribution. CLEO: QELS Fundamental Science (Optical Society of America, 2016), JTu5A-19 (2016)

  51. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12, 685–697 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the brádler-dušek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  53. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  54. Liu, B., Gao, F., Huang, W., et al.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Sun, Z., Zhang, C., Wang, B., et al.: Improvements on “Multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12, 3411–3420 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15, 2101–2111 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Xu, G.B., Wen, Q.Y., Gao, F., et al.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful discussions with X. Huang and L.L. Zhou in the late stage of this study. This work is supported by the National Natural Science Foundation of China (Nos. 61473199 and 61104002) and Youth Fund Project of the Natural Science Foundation of Jiangsu Province (No. BK20140305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, T., Jiang, M. & Cao, G. Multi-party quantum key agreement with five-qubit brown states. Quantum Inf Process 17, 103 (2018). https://doi.org/10.1007/s11128-018-1871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1871-4

Keywords

Navigation