Abstract
In this paper, we investigate the simultaneous dense coding (SDC) protocol affected by fluctuating massless scalar field. The noisy model of SDC protocol is constructed and the master equation that governs the SDC evolution is deduced. The success probabilities of SDC protocol are discussed for different locking operators under the influence of vacuum fluctuations. We find that the joint success probability is independent of the locking operators, but other success probabilities are not. For quantum Fourier transform and double controlled-NOT operators, the success probabilities drop with increasing two-atom distance, but SWAP operator is not. Unlike the SWAP operator, the success probabilities of Bob and Charlie are different. For different noisy interval values, different locking operators have different robustness to noise.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Hao, J.C., Li, C.F., Guo, G.C.: Probabilistic dense coding and teleportation. Phys. Lett. A 278, 113 (2000)
Werner, R.F.: All teleportation and dense coding schemes. J. Phys. A 34, 7081 (2001)
Situ, H.Z.: Controlled simultaneous teleportation and dense coding. Int. J. Theor. Phys. 53, 1003 (2014)
Zhang, C., Situ, H.Z., Li, Q., He, G.P.: Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states. Int. J. Quantum Inf. 14, 1650023 (2016)
Bowen, G.: Classical information capacity of superdense coding. Phys. Rev. A 63, 022302 (2001)
Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63, 054301 (2001)
Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)
Mozes, S., Oppenheim, J., Reznik, B.: Deterministic dense coding with partially entangled states. Phys. Rev. A 71, 012311 (2005)
Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72, 012329 (2005)
Situ, H.Z.: Dense coding process with imperfect encoding operations. Int. J. Theor. Phys. 52, 3779 (2013)
Wang, M.Y., Yan, F.L., Gao, T., Li, Y.C.: Simultaneous quantum state teleportation via the locked entanglement channel. Int. J. Quantum Inf. 6, 201 (2008)
Situ, H.Z., Qiu, D.W.: Simultaneous dense coding. J. Phys. A Math. Theor. 43, 055301 (2010)
Situ, H.Z., Qiu, D.W., Mateus, P., Paunkovic, N.: Secure N-dimensional simultaneous dense coding and applications. Int. J. Quantum Inf. 13, 1550051 (2015)
Benatti, F., Floreanini, R.: Controlling entanglement generation in external quantum fields. J. Opt. B Quantum Semiclassical Opt. 7, S429 (2005)
Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)
Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)
Huang, Z.M., Zhang, C., Situ, H.Z.: Performance analysis of simultaneous dense coding protocol under decoherence. Quantum Inf. Process. 16, 227 (2017)
Phillips, N.G., Hu, B.L.: Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation. Phys. Rev. D 62, 084017 (2000)
Ford, L.H., Roman, T.A.: Minkowski vacuum stress tensor fluctuations. Phys. Rev. D 72, 105010 (2005)
Pozas-Kerstjens, A., Martín-Martínez, E.: Harvesting correlations from the quantum vacuum. Phys. Rev. D 92, 064042 (2015)
Pozas-Kerstjens, A., Martín-Martínez, E.: Entanglement harvesting from the electromagnetic vacuum with hydrogenlike atoms. Phys. Rev. D 94, 064074 (2016)
Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857 (2015)
Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929 (2016)
Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15, 4805 (2016)
Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)
Yeo, Y., An, J.H., Oh, C.H.: Non-Markovian effects on quantum-communication protocols. Phys. Rev. A 82, 032340 (2010)
Jun, J.W.: Non-Markovian effects on multiparticle entanglement swapping. Eur. Phys. J. D 67, 237 (2013)
Li, J.F., Liu, J.M., Xu, X.Y.: Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf. Process. 14, 3465 (2015)
Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16, 115 (2017)
Audretsch, J., Muller, R.: Spontaneous excitation of an accelerated atom: the contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A 50, 1755 (1994)
Milonni, P.W.: The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Academic, San Diego (1994)
Ficek, Z., Tanas, R.: Entangled states and collective nonclassical effects in two-atom systems. Phys. Rep. 372, 369 (2002)
Wang, G., Li, T., Deng, F.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf. Process. 14, 1305 (2015)
Yang, Z.G., Wu, T.T., Liu, J.M.: Remote state preparation via photonic Faraday rotation in low-Q cavities. Acta Phys. Sin. 65, 020302 (2016)
Tian, Z., Jing, J.: Geometric phase of two-level atoms and thermal nature of de Sitter spacetime. JHEP 04, 109 (2013)
Tian, Z., Jing, J.: Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime. Ann. Phys. 350, 1 (2014)
Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)
Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)
Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)
Acknowledgements
This work is supported by the Science Foundation for Young Teachers of Wuyi University (Grant No. 2015zk01), the Doctoral Research Foundation of Wuyi University (2017BS07), and the Doctoral Research Foundation of Wuyi University (2016BS02).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, Z., Ye, Y. & Luo, D. Simultaneous dense coding affected by fluctuating massless scalar field. Quantum Inf Process 17, 101 (2018). https://doi.org/10.1007/s11128-018-1872-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1872-3