Skip to main content
Log in

Entanglement degradation in the presence of the Kerr–Newman black hole

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate bipartite quantum correlations in the presence of the four-dimensional Kerr–Newman black hole using the negativity as a measure for the entanglement. We assume Alice and Rob initially share a maximally entangled state, and then Rob accelerates toward the event horizon \(h_{+}\). We find that when Rob accelerates uniformly toward the external horizon, the entanglement degrades for the Alice–Rob system and this degradation increases as Rob gets closer to the horizon. It is found that for the case Alice–AntiRob, no creation of quantum correlation occurs. Finally, we investigate the bipartite entanglement using an alternative entanglement measure, namely generalized concurrence, and we show that the results are in consistent with those obtained by negativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. B 83, 3081–3084 (1999)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. B 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Josza, R., Peres, A., Wooters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Steane, A.M.: Quantum computing. Rep. Prog. Phys. 61, 117–173 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95 (2005). id.120404

  8. Ling, Y., He, S., Qiu, W., Zhang, H.: Quantum entanglement of electromagnetic field in non-inertial reference frames. J. Phys Math. Theor. A 40, 9025–9032 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Datta, A.: Quantum discord between relatively accelerated observers. Phys. Rev. A 80 (2009). id. 052304

  10. Wang, J., Deng, J., Jing, J.: Classical correlation and quantum discord sharing of Dirac fields in noninertial frames. Phys. Rev. A 81 (2010). id. 052120

  11. Hwang, M.R., Park, D.K., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83 (2011). id. 012111

  12. Martin-Martinez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83 (2011). id. 052306

  13. Montero, M., Martin-Martinez, E.: Fermionic entanglement ambiguity in noninertial frames. Phys. Rev. A 83 (2011). id. 062323

  14. Montero, M., Leon, J., Martin-Martinez, E.: Fermionic entanglement extinction in noninertial frames. Phys. Rev. A 84 (2011). id. 042320

  15. Park, D.K.: Tripartite entanglement-dependence of tripartite non-locality in non-inertial frames. J. Phys. A Math. Theor. 45 (2012). article id. 415308, 10 pp

  16. Hwang, M.R., Jung, E., Park, D.: Three-tangle in non-inertial frame. Class. Quantum Grav. 29, 1–1 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Czachor, M.: Einstein–Podolsky–Rosen–Bohm experiment with relativistic massive particles. Phys. Rev. A 55, 72–77 (1997)

    Article  ADS  Google Scholar 

  18. Alsing, P.M., Milburn, G.J.: Lorentz invariance of entanglement. Quantum Inf. Comput. 2, 487–512 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Gingrich, R.M., Adami, C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89 (2002). id. 270402

  20. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95 (2005). id. 120404

  21. Ling, Y., He, S., Qiu, W., Zhang, H.: Quantum entanglement of electromagnetic field in non-inertial reference frames. J. Phys. A 40, 9025–9032 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Pan, Q., Jing, J.: Degradation of nonmaximal entanglement of scalar and Dirac fields in noninertial frames. Phys. Rev. A 77 (2008). id. 024302

  23. Pan, Q., Jing, J.: Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole. Phys. Rev. D 78 (2008). id. 065015

  24. Martin-Martinez, E., Garay, L.J., Leon, J.: Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82 (2010). id. 064006

  25. Park, D.: Entanglement degradation in the presence of (4 + n)-dimensional Schwarzschild black hole. Int. J. Quantum Inform. 11 (2013). id. 1350014-179

  26. Gammie, C.F., Shapiro, S.L., McKinney, J.C.: Black hole spin evolution. Astrophys. J. 602, 312–319 (2004)

    Article  ADS  Google Scholar 

  27. Wang, J.M., Chen, Y.M., Ho, L.C., McLure, R.J.: Evidence for rapidly spinning black holes in quasars. Astrophys. J. 642, L111–L114 (2006)

    Article  ADS  Google Scholar 

  28. Ida, D., Oda, K.Y., Park, S.C.: Rotating black holes at future colliders: greybody factors for brane fields [Erratum: 2004PhRvD..69d9901I ], Phys. Rev. D 67 (2003) id. 064025

  29. Bhaskara, V.S., Panigrahi, P.K.: Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using Lagrange’s identity and wedge product. Quantum Inf. Process. 16 (2017). article id.118, p. 15

  30. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phy. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  31. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, charged mass. J. Math. Phys. 6, 918–919 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  33. Boyer, R.H., Lindquist, R.W.: Maximal analytic extension of the Kerr metric. J. Math. Phys. 8, 265–281 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Rindler, W.: Kruskal space and the uniformly accelerated frame. Am. J. Phys. 34, 1174–1178 (1966)

    Article  ADS  Google Scholar 

  35. Camargo, H.A., Socolovsky, M.: Rindler approximation to Kerr–Newman black hole. Euro. Phys. J. Plus 130 (2015). article id.230, p. 6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pedram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghari, M., Pedram, P. & Espoukeh, P. Entanglement degradation in the presence of the Kerr–Newman black hole. Quantum Inf Process 17, 115 (2018). https://doi.org/10.1007/s11128-018-1873-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1873-2

Keywords

Navigation