Abstract
This paper introduces a novel algorithm to synthesize a low-cost reversible circuits for any Boolean function with n inputs represented as a Positive Polarity Reed–Muller expansion. The proposed algorithm applies a predefined rules to reorder the terms in the function to minimize the multi-calculation of common parts of the Boolean function to decrease the quantum cost of the reversible circuit. The paper achieves a decrease in the quantum cost and/or the circuit length, on average, when compared with relevant work in the literature.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible circuits. In: Proceedings of the 2010 Asia and South Pacific Design Automation Conference, ASPDAC ’10, pp. 849–854. IEEE Press, Piscataway, NJ, USA. http://dl.acm.org/citation.cfm?id=1899721.1899916 (2010)
Barenco, A., Bennett, C., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995). https://doi.org/10.1103/PhysRevA.52.3457
Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)
Cusick, T., Stanica, P.: Chapter 2—Fourier analysis of Boolean functions. In: Cusick, T., Stanica, P. (eds.) Cryptographic Boolean Functions and Applications, pp. 5–24. Academic Press, Boston (2009). https://doi.org/10.1016/B978-0-12-374890-4.00006-9
Cusick, T., Stanica, P.: Preface. In: Cusick, T., Stanica, P. (eds.) Cryptographic Boolean Functions and Applications, pp. xi–xii. Academic Press, Boston (2009). https://doi.org/10.1016/B978-0-12-374890-4.00003-3
Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys 21(3), 219–253 (1982). https://doi.org/10.1007/BF01857727
Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation rules for designing CNOT-based quantum circuits. In: Proceedings of the 39th Annual Design Automation Conference, DAC ’02, pp. 419–424. ACM, New York, NY, USA (2002). https://doi.org/10.1145/513918.514026
Mamataj, S., Saha, D., Banu, N.: A review on reversible logic gates and their implementation. Int. J. Emerg. Technol. Adv. Eng. 3(3), 151–161 (2013)
Maslov, D.: Reversible benchmarks. http://webhome.cs.uvic.ca/~dmaslov/
Maslov, D., Miller, D.: Comparison of the cost metrics for reversible and quantum logic synthesis (2006). arXiv:quant-ph/0511008
Miller, D., Maslov, D., Dueck, G.: A transformation based algorithm for reversible logic synthesis. In: Proceedings of the 40th Annual Design Automation Conference, DAC ’03, pp. 318–323. ACM, New York, NY, USA (2003). https://doi.org/10.1145/775832.775915
Nielsen, M., Chuang, I.: Quantum computation and quantum information. Int. J. Parallel Emerg. Distrib. Syst. 21(1), 1–59 (2006). https://doi.org/10.1080/17445760500355678
Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. J. Emerg. Technol. Comput. Syst. 6(4), 13:1–13:26 (2010). https://doi.org/10.1145/1877745.1877747
Sasamal, T.N., Singh, A.K., Mohan, A.: Reversible logic circuit synthesis and optimization using adaptive genetic algorithm. Procedia Comput. Sci. 70, 407–413 (2015). https://doi.org/10.1016/j.procs.2015.10.054. Proceedings of the 4th International Conference on Eco-friendly Computing and Communication Systems
Shende, V., Prasad, A., Markov, I., Hayes, J.: Synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6), 710–722 (2003)
Szyprowski, M., Kerntopf, P.: Reducing quantum cost in reversible toffoli circuits (2011). arXiv:1105.5831 [quant-ph]
Tran, L., Gronquist, A., Perkowski, M., Caughman, J.: An improved factorization approach to reversible circuit synthesis based on exors of products of exors. In: IEEE 46th International Symposium on Multiple-Valued Logic, pp. 37–43 (2016). https://doi.org/10.1109/ISMVL.2016.56
Tran, L.H.: Reversible circuits synthesis based on exor-sum of products of exor-sums. Dissertations and Theses (2015)
Wille, R., Große, D., Teuber, L., Dueck, G., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 220–225. RevLib is available at http://www.revlib.org (2008)
Yang, G., Song, X., Hung, W., Perkowski, M., Seo, C.J.: Synthesis of reversible circuits with minimal costs. CALCOLO 45, 193–206 (2008)
Younes, A.: Reducing quantum cost of reversible circuits for homogeneous Boolean function. J. Circuits Syst. Comput. 19(7), 1423–1434 (2010)
Younes, A.: Detection and elimination of non-trivial reversible identities. Int. J. Comput. Sci. Eng. Appl. (IJCSEA) 2(4), 49 (2012)
Younes, A., Miller, J.: Representation of Boolean quantum circuits as reed-muller expansions. Int. J. Electron. 91(7), 431–444 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ahmed, T., Younes, A. & Elsayed, A. Improving the quantum cost of reversible Boolean functions using reorder algorithm. Quantum Inf Process 17, 104 (2018). https://doi.org/10.1007/s11128-018-1874-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1874-1