Abstract
With the help of weak cross-Kerr nonlinearities, we propose a single-photon controlled multi-photon polarization unitary gate, which can fulfill the task of n single-photon controlled one-photon polarization unitary gates, but only by adopting a nondestructive measurement and an auxiliary coherent state. Moreover, simple linear optical elements and mature existing techniques containing Homodyne measurement and classical feed-forward are applied. So this scheme provides an efficient and feasible approach for optimally fulfilling single-photon controlled multi-photon unitary gate.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74(20), 4083–4086 (1995)
Cirac, J.I.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)
Yi, X.X., Su, X.H., You, L.: Conditional quantum phase gate between two 3-state atoms. Phys. Rev. Lett. 90(9), 097902 (2003)
Duan, L.-M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92(12), 127902 (2004)
Zou, X., Zhang, S.L., Li, K., Guo, G.: Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors. Phys. Rev. A 75(3), 034302 (2007)
Wang, M.-F., Jiang, N.-Q., Jin, Q.-L., Zheng, Y.-Z.: Continuous-variable controlled-Z gate using an atomic ensemble. Phys. Rev. A 83(6), 062339 (2011)
Nielsen, E., Muller, R., Carroll, M.: Configuration interaction calculations of the controlled phase gate in double quantum dot qubits. Phys. Rev. B 85(3), 035319 (2012)
Wei, H.-R., Deng, F.-G.: Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express 22(1), 593 (2014)
Xu, G.F., Zhang, J., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett. 109(17), 170501 (2012)
Xue, Z.-Y., Zhou, J., Wang, Z.D.: Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits. Phys. Rev. A 92(2), 022320 (2015)
Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422(6930), 408–411 (2003)
Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75(25), 4710–4713 (1995)
Lemr, K., Cernoch, A., Soubusta, J., Kieling, K., Eisert, J., Dusek, M.: Experimental implementation of the optimal linear-optical controlled phase gate. Phys. Rev. Lett. 106(1), 013602 (2011)
Ukai, R., Yokoyama, S., Yoshikawa, J., van Loock, P., Furusawa, A.: Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation. Phys. Rev. Lett. 107(25), 250501 (2011)
Rashid, M., Maarten, H., Yasir, J.: C-NOT gate based on ultracold Rydberg atom interactions. Sci. China 56(11), 2134–2137 (2013)
Feng, G., Guofu, X., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110(19), 190501 (2013)
Antonelli, C., Shtaif, M., Brodsky, M.: Sudden death of entanglement induced by polarization mode dispersion. Phys. Rev. Lett. 106(8), 080404 (2011)
Shtaif, M., Antonelli, C., Brodsky, M.: Nonlocal compensation of polarization mode dispersion in the transmission of polarization entangled photons. Opt. Express 19(3), 1728–1733 (2011)
Dong, L., Wang, J.-X., Li, Q.-Y., Shen, H.-Z., Dong, H.-K., Xiu, X.-M., Gao, Y.-J.: Single logical qubit information encoding scheme with the minimal optical decoherence-free subsystem. Opt. Lett. 41(5), 1030–1033 (2016)
Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93(25), 250502 (2004)
Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79(2), 022301 (2009)
Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80(4), 042310 (2009)
Xia, Y., Song, J., Pei-Min, L., Song, H.-S.: Efficient implementation of the two-qubit controlled phase gate with cross-Kerr nonlinearity. J. Phys. B Atomic Mol. Opt. Phys. 44(2), 025503 (2011)
Lin, Q., He, B.: Weaving independently generated photons into an arbitrary graph state. Phys. Rev. A 84(6), 062312 (2011)
Xiu, X.-M., Dong, L., Gao, Y.-J., Yi, X.X.: Nearly deterministic controlled-not gate with weak cross-Kerr nonlinearities. Quantum Inf. Comput. 12(1–2), 0159–0170 (2012)
Xiu, X.-M., Dong, L., Shen, H.-Z., Gao, Y.-J., Yi, X.X.: Construction scheme of a two-photon polarization controlled arbitrary phase gate mediated by weak cross-phase modulation. J. Opt. Soc. Am. B 30(3), 589–597 (2013)
Shende, V.V., Markov, I.L., Bullock, S.S.: Minimal universal two-qubit controlled-NOT-based circuits. Phys. Rev. A 69(6), 062321 (2004)
Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)
Chau, H.F., Wilczek, F.: Simple realization of the fredkin gate using a series of two-body operators. Phys. Rev. Lett. 75(4), 748–750 (1995)
Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)
Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74(20), 4087–4090 (1995)
Smolin, J.A., DiVincenzo, D.P.: Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys. Rev. A 53(4), 2855–2856 (1996)
Nengkun, Y., Ying, M.: Optimal simulation of Deutsch gates and the Fredkin gate. Phys. Rev. A 91(3), 032302 (2015)
Jones, C.: Low-overhead constructions for the fault-tolerant Toffoli gate. Phys. Rev. A 87(2), 022328 (2013)
Ivanov, S.S., Ivanov, P.A., Vitanov, N.V.: Efficient construction of three- and four-qubit quantum gates by global entangling gates. Phys. Rev. A 91(3), 032311 (2015)
Milburn, G.J.: Quantum optical Fredkin gate. Phys. Rev. Lett. 62(18), 2124–2127 (1989)
Lin, Q., He, B.: Highly efficient processing of multi-photon states. Sci. Rep. 5, 12792 (2015)
Dong, L., Lin, Y.-F., Wang, J.-X., Li, Q.-Y., Shen, H.-Z., Dong, H.-K., Ren, Y.-P., Xiu, X.-M., Gao, Y.-J., Choo Hiap, O.: Nearly deterministic Fredkin gate based on weak cross-Kerr nonlinearities. J. Opt. Soc. Am. B 33(2), 253–260 (2016)
Lin, X.-M., Zhou, Z.-W., Ye, M.-Y., Xiao, Y.-F., Guo, G.-C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73(1), 012323 (2006)
Zou, X., Li, K., Guo, G.: Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate. Phys. Rev. A 74(4), 044305 (2006)
Xiao, Y.-F., Zou, X.-B., Guo, G.-C.: One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75(5), 054303 (2007)
Zhang, Y.Q., Zhang, S., Yeon, K.H., Yu, S.C.: One-step implementation of a multiqubit controlled-phase gate with superconducting quantum interference devices coupled to a resonator. J. Opt. Soc. Am. B 29(3), 300–304 (2012)
Xiu, X.-M., Li, Q.-Y., Lin, Y.-F., Dong, L., Dong, H.-K., Gao, Y.-J.: One-photon controlled two-photon not gate contributed by weak cross-Kerr nonlinearities. Opt. Commun. 393, 173–177 (2017)
Gardiner, C.W., Zoller, P.: Quantum Noise. Springer Press, Berlin (2000)
Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)
Chuang, I., Yamamoto, Y.: Simple quantum computer. Phys. Rev. A 52(5), 3489–3496 (1995)
Shapiro, J.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73(6), 062305 (2006)
Shapiro, J.H., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. N. J. Phys. 9(1), 16 (2007)
Kok, P.: Effects of self-phase-modulation on weak nonlinear optical quantum gates. Phys. Rev. A 77(1), 013808 (2008)
Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81(4), 043823 (2010)
Fan, B., Kockum, A.F., Combes, J., Johansson, G., Hoi, I., Wilson, C.M., Delsing, P., Milburn, G.J., Stace, T.M.: Breakdown of the cross-Kerr scheme for photon counting. Phys. Rev. Lett. 110(5), 053601 (2013)
Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50(7), 36–42 (1997)
Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77(2), 633–673 (2005)
Schmidt, H., Imamoglu, A.: Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21(23), 1936–1938 (1996)
Harris, S., Hau, L.: Nonlinear optics at low light levels. Phys. Rev. Lett. 82(23), 4611–4614 (1999)
Lukin, M.D., Imamoglu, A.: Nonlinear optics and quantum entanglement of ultraslow single photons. Phys. Rev. Lett. 84(7), 1419–1422 (2000)
Petrosyan, D., Kurizki, G.: Symmetric photon–photon coupling by atoms with Zeeman-split sublevels. Phys. Rev. A 65(3), 033833 (2002)
Bajcsy, M., Zibrov, A.S., Lukin, M.D.: Stationary pulses of light in an atomic medium. Nature 426(6967), 638–641 (2003)
Chen, Y.-F., Wang, C.-Y., Wang, S.-H., Ite, A.Y.: Low-light-level cross-phase-modulation based on stored light pulses. Phys. Rev. Lett. 96(4), 043603 (2006)
Li, Y., Hang, C., Ma, L., Huang, G.: Controllable entanglement of lights in a five-level system. Phys. Lett. A 354(1–2), 1–7 (2006)
Wang, Z.-B., Marzlin, K.-P., Sanders, B.C.: Large cross-phase modulation between slow copropagating weak pulses in \(^{87}\)Rb. Phys. Rev. Lett. 97(6), 063901 (2006)
Lo, H.Y., Chen, Y.C., Su, P.C., Chen, H.C., Chen, J.X., Chen, Y.C., Yu, I.A., Chen, Y.F.: Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels. Phys. Rev. A 83(4), 041804(R) (2011)
Shiau, B.-W., Meng-Chang, W., Lin, C.-C., Chen, Y.-C.: Low-light-level cross-phase modulation with double slow light pulses. Phys. Rev. Lett. 106(19), 193006 (2011)
Chen, Y.H., Lee, M.J., Hung, W., Chen, Y.C., Chen, Y.F., Yu, I.A.: Demonstration of the interaction between two stopped light pulses. Phys. Rev. Lett. 108(17), 173603 (2012)
Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397(6720), 594–598 (1999)
He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83(5), 053826 (2011)
He, B., Scherer, A.: Continuous-mode effects and photon–photon phase gate performance. Phys. Rev. A 85(3), 033814 (2012)
Friedler, I., Petrosyan, D., Fleischhauer, M., Kurizki, G.: Long-range interactions and entanglement of slow single-photon pulses. Phys. Rev. A 72(4), 043803 (2005)
He, B., MacRae, A., Han, Y., Lvovsky, A., Simon, C.: Transverse multimode effects on the performance of photon–photon gates. Phys. Rev. A 83(2), 022312 (2011)
Shahmoon, E., Kurizki, G., Fleischhauer, M., Petrosyan, D.: Strongly interacting photons in hollow-core waveguides. Phys. Rev. A 83(3), 033806 (2011)
Venkataraman, V., Saha, K., Gaeta, A.L.: Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photonics 7(2), 138–141 (2012)
Jin, G.-S., Lin, Y., Biao, W.: Generating multiphoton Greenberger–Horne–Zeilinger states with weak cross-Kerr nonlinearity. Phys. Rev. A 75(5), 054302 (2007)
Feizpour, A., Hallaji, M., Dmochowski, G., Steinberg, A.M.: Observation of the nonlinear phase shift due to single post-selected photons. Nat. Phys. 11(11), 905–909 (2015)
Hoi, I.-C., Kockum, A.F., Palomaki, T., Stace, T.M., Fan, B., Tornberg, L., Sathyamoorthy, S.R., Johansson, G., Delsing, P., Wilson, C.M.: Giant cross-Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111(5), 053601 (2013)
Pernice, W.H.P., Schuck, C., Minaeva, O., Li, M., Goltsman, G.N., Sergienko, A.V., Tang, H.X.: High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)
Huang, D., Huang, P., Lin, D., Wang, C., Zeng, G.: High-speed continuous-variable quantum key distribution without sending a local oscillator. Opt. Lett. 40(16), 3695–3698 (2015)
Bakker, M.P., Snijders, H., Löffler, W., Barve, A.V., Coldren, L.A., Bouwmeester, D., van Exter, M.P.: Homodyne detection of coherence and phase shift of a quantum dot in a cavity. Opt. Lett. 40(13), 3173–3176 (2015)
Acknowledgements
This study was supported by the National Natural Science Foundation of China (Grant Nos. 11674037, 11544013, 11305016, 61301133, 11271055), the Natural Science Foundation of Liaoning Province (20170540010), the Program for Liaoning Innovative Talents in University (LR2016001), and the Program of the Educational Office of Liaoning Province of China (Grant No. LQ2017006).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Dong, L., Lin, YF., Cui, C. et al. Single-photon controlled multi-photon polarization unitary gate based on weak cross-Kerr nonlinearities. Quantum Inf Process 17, 114 (2018). https://doi.org/10.1007/s11128-018-1882-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1882-1