Skip to main content
Log in

Protecting nonlocality of multipartite states by feed-forward control

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Nonlocality is a useful resource in quantum communication and quantum information processing. In practical quantum communication, multipartite entangled states must be distributed between different users in different places through a channel. However, the channel is usually inevitably disturbed by the environment in quantum state distribution processing and then the nonlocality of states will be weakened and even lost. In this paper, we use a feed-forward control scheme to protect the nonlocality of the Bell and GHZ states against dissipation. We find that this protection scheme is very effective, specifically, for the Bell state, we can increase the noise threshold from 0.5 to 0.98, and for GHZ state from 0.29 to 0.96. And we also find that entanglement is relatively easier to be protected than nonlocality. For our scheme, protecting entanglement is equivalent to protecting the state in the case of Bell state, while protecting nonlocality is not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bell, J.S.: On the einstein podolsky rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  2. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  3. Silva, R., Gisin, N., Guryanova, Y., Popescu, S.: Multiple observers can share the nonlocality of half of an entangled pair by using optimal weak measurements. Phys. Rev. Lett. 114, 250401 (2015)

    Article  ADS  Google Scholar 

  4. Pütz, G., Martin, A., Gisin, N., Aktas, D., Fedrici, B., Tanzilli, S.: Quantum nonlocality with arbitrary limited detection efficiency. Phys. Rev. Lett. 116, 010401 (2016)

    Article  MATH  Google Scholar 

  5. Aktas, D., Tanzilli, S., Martin, A., Pütz, G., Thew, R., Gisin, N.: Demonstration of quantum nonlocality in the presence of measurement dependence. Phys. Rev. Lett. 114, 220404 (2015)

    Article  ADS  Google Scholar 

  6. Aćin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  Google Scholar 

  7. Masanes, L., Pironio, S., Aćin, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nat. Commun. 2, 238 (2011)

    Article  ADS  Google Scholar 

  8. Brukner, C., Zukowski, M., Pan, J.W., Zeilinger, A.: Bells inequalities and quantum communication complexity. Phys. Rev. Lett. 92, 127901 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ramanathan, R., Brandao, F., Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P.: Robust device independent randomness amplification. arXiv:1308.4635 [quant-ph] (2013)

  10. Bardyn, C.E., Liew, T.C.H., Massar, S., McKague, M., Scarani, V.: Device-independent state estimation based on Bell’s inequalities. Phys. Rev. A 80, 062327 (2009)

    Article  ADS  Google Scholar 

  11. Pironio, S., Aćin, A., Massar, S., de la Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bells theorem. Nature 464, 1021 (2010)

    Article  ADS  Google Scholar 

  12. Rabelo, R., Ho, M., Cavalcanti, D., Brunner, N., Scarani, V.: Device independent certification of entangled measurements. Phys. Rev. Lett. 107, 050502 (2011)

    Article  ADS  Google Scholar 

  13. Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A.: Experimental test of quantum nonlocality in three photon Greenberger Horne Zeilinger entanglement. Nature 403, 515 (2000)

    Article  ADS  MATH  Google Scholar 

  14. Hensen, B., Bernien, H., Dréau, A.E., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682 (2015)

    Article  ADS  Google Scholar 

  15. Coppersmith, S.: Quantum information: violation of Bell’s inequality in Si. Nat. Nanotechnol. 11, 216 (2016)

    Article  ADS  Google Scholar 

  16. Chaves, R., Aćin, A., Aolita, L., Cavalcanti, D.: Detecting nonlocality of noisy multipartite states with the Clauser–Horne–Shimony–Holt inequality. Phys. Rev. A. 89, 042106 (2014)

    Article  ADS  Google Scholar 

  17. Sohbi, A., Zaquine, I., Diamanti, E., Markham, D.: Decoherence effects on the nonlocality of symmetric states. Phys. Rev. A. 91, 022101 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  21. Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)

    Article  ADS  Google Scholar 

  22. Ghose, S., Sinclair, N., Debnath, S., Rungta, P., Stock, R.: Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger–Horne–Zeilinger-class states. Phys. Rev. Lett. 102, 250404 (2009)

    Article  ADS  Google Scholar 

  23. Bancal, J.D., Branciard, C., Gisin, N., Pironio, S.: Quantifying multipartite nonlocality. Phys. Rev. Lett. 103, 090503 (2009)

    Article  ADS  Google Scholar 

  24. Bancal, J.D., Brunner, N., Gisin, N., Liang, Y.C.: Detecting genuine multipartite quantum nonlocality: a simple approach and generalization to arbitrary dimensions. Phys. Rev. Lett. 106, 020405 (2011)

    Article  ADS  Google Scholar 

  25. Bancal, J.D., Barrett, J., Gisin, N., Pironio, S.: Definitions of multipartite nonlocality. Phys. Rev. Lett. A 88, 014102 (2013)

    Article  ADS  Google Scholar 

  26. Popescu, S., Rohrlich, D.: Generic quantum nonlocality. Phys. Lett. A 166, 293 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  27. Yu, S., Chen, Q., Zhang, C., Lai, C.H., Oh, C.H.: All entangled pure states violate a single bells inequality. Phys. Rev. Lett. 109, 120402 (2012)

    Article  ADS  Google Scholar 

  28. Wang, C.Q., Xu, B.M., Zou, J., He, Z., Yan, Y., Li, J.G., Shao, B.: Feed-forward control for quantum state protection against decoherence. Phys. Rev. A 89, 032303 (2014)

    Article  ADS  Google Scholar 

  29. Braunstein, S.L., Mann, A., Revzen, M.: Maximal violation of Bell inequalities for mixed states. Phys. Rev. Lett. 68, 3259 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 210, 223 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed spin-\(1/2\) states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Borras, A., Majtey, A.P., Plastino, A.R., Casas, M., Plastino, A.: Robustness of highly entangled multiqubit states under decoherence. Phys. Rev. A 79, 022108 (2009)

    Article  ADS  Google Scholar 

  33. He, Z., Zou, J., Shao, B., Kong, S.Y.: The decoherence dynamics of multipartite entanglement in a non-Markovian environment. J. Phys. B: At. Mol. Opt. Phys. 43, 115503 (2010)

    Article  ADS  Google Scholar 

  34. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  35. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  36. Camalet, S.: Measure-independent anomaly of nonlocality. Phys. Rev. A 96, 052332 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. Audretsch, J., Konrad, T., Scherer, A.: Sequence of unsharp measurements enabling a real-time visualization of a quantum oscillation. Phys. Rev. A 63, 052102 (2001)

    Article  ADS  Google Scholar 

  38. Gillett, G.G., Dalton, R.B., Lanyon, B.P., Almeida, M.P., et al.: Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett. 104, 080503 (2010)

    Article  ADS  Google Scholar 

  39. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zou.

Additional information

This work was supported by the National Natural Science Foundation of China (Grants Nos. 11775019 and 11375025).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XG., Zou, J. & Shao, B. Protecting nonlocality of multipartite states by feed-forward control. Quantum Inf Process 17, 123 (2018). https://doi.org/10.1007/s11128-018-1888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1888-8

Keywords

Navigation