Skip to main content
Log in

Qubit-loss-free fusion of atomic W states via photonic detection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose two new qubit-loss-free (QLF) fusion schemes for W states in cavity QED system. Resonant interactions between atoms and single cavity mode constitute the main fusion mechanism, with which atomic \(|W_{n+m}\rangle \) and \(|W_{n+m+q}\rangle \) states can be generated, respectively, from a \(|W_{n}\rangle \) and a \(|W_{m}\rangle \) and from a \(|W_{n}\rangle \), a \(|W_{m}\rangle \) and a \(|W_{q}\rangle \), by detecting the cavity mode. The QLF property of the schemes makes them more efficient and simpler than the currently existing ones, and fewer intermediate steps and memory resources are required for generating a target large-scale W state. Furthermore, the fusion of atomic states can be realized via the detection on cavity mode rather than the much complicated atomic detection, which makes our schemes feasible. In addition, the analyses of the optimal resource cost and the experimental feasibility indicate that the present schemes are simple and efficient, and maybe implementable within the current experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrödinger, E.: Die Gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  6. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2), 022312 (2003)

    Article  ADS  Google Scholar 

  7. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Pearson, J., Feng, G.R., Zheng, C., Long, G.L.: Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system. Sci. China Phys. Mech. Astron. 59(12), 120312 (2016)

    Article  Google Scholar 

  10. Li, T.C., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61(2), 163–171 (2016)

    Article  MathSciNet  Google Scholar 

  11. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58(12), 1131–1143 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910–913 (2001)

    Article  ADS  Google Scholar 

  13. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93(1), 99 (1954)

    Article  ADS  MATH  Google Scholar 

  14. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Tashima, T., Tame, M.S., Özdemir, S.K., Nori, F., Koashi, M., Weinfurter, H.: Photonic multipartite entanglement conversion using nonlocal operations. Phys. Rev. A 94(5), 052309 (2016)

    Article  ADS  Google Scholar 

  16. Dag, C.B., Niedenzu, W., Mustecaplioglu, O.E., Kurizki, G.: Multiatom quantum coherences in micromasers as fuel for thermal and nonthermal machines. Entropy 18, 244 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Inf. Comput. 6, 173 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Zhao, Z., Zhang, A.N., Chen, Y.A., Yang, T., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54 (2004)

    Article  ADS  Google Scholar 

  19. Kempe, J.: Multiparticle entanglement and its applications to cryptography. Phys. Rev. A 60(2), 910 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kiesel, N., Schmid, C., Tth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled Dicke state with high fidelity. Phys. Rev. Lett. 98(6), 063604 (2007)

    Article  ADS  Google Scholar 

  21. Ozaydin, F.: Phase damping destroys quantum Fisher information of W states. Phys. Lett. A 378(43), 3161–3164 (2014)

    Article  ADS  MATH  Google Scholar 

  22. Dür, W.: Multipartite entanglement that is robust against disposal of particles. Phys. Rev. A 63(2), 020303(R) (2001)

    Article  ADS  Google Scholar 

  23. Häffner, H., et al.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643 (2005)

    Article  ADS  Google Scholar 

  24. Tashima, T., Kitano, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Demonstration of local expansion toward large-scale entangled webs. Phys. Rev. Lett. 105, 210503 (2010)

    Article  ADS  Google Scholar 

  25. Tashima, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Elementary optical gate for expanding an entanglement web. Phys. Rev. A 77(3), 030302 (2008)

    Article  ADS  MATH  Google Scholar 

  26. Tashima, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local expansion of photonic W state using a polarization-dependent beamsplitter. New J. Phys. 11, 023024 (2009)

    Article  ADS  Google Scholar 

  27. Zang, X.P., Yang, M., Wu, W.F., Fang, S.D., Cao, Z.L.: Local expansion of atomic W state in cavity quantum electrodynamics. Indian J. Phys. 88(11), 1141–1145 (2014)

    Article  ADS  Google Scholar 

  28. Zang, X.P., Yang, M., Ozaydin, F., Song, W., Cao, Z.L.: Deterministic generation of large scale atomic W states. Opt. Express 24(11), 12293–12300 (2016)

    Article  ADS  Google Scholar 

  29. Yesilyurt, C., Bugu, S., Ozaydin, F., Altintas, A.A., Tame, M., Yang, L., Özdemir, S.K.: Deterministic local doubling of W states. J. Opt. Soc. Am. B 33(11), 2313–2319 (2016)

    Article  ADS  Google Scholar 

  30. Özdemir, S.K., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for W-states. New J. Phys. 13, 103003 (2011)

    Article  Google Scholar 

  31. Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic W or Bell states. Quantum Inf. Process. 12(9), 2965–2975 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87(3), 032331 (2013)

    Article  ADS  Google Scholar 

  33. Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Ozdemir, S.K.: Fusing multiple W states simultaneously with a Fredkin gate. Phys. Rev. A 89(4), 042311 (2014)

    Article  ADS  Google Scholar 

  34. Han, X., Hu, S., Guo, Q., Wang, H.F., Zhang, S.: Effective scheme for W-state fusion with weak cross-Kerr nonlinearities. Quantum Inf. Process. 14(6), 1919–1932 (2015)

    Article  ADS  MATH  Google Scholar 

  35. Li, K., Yang, M., Yang, Q., Cao, Z.L.: Fusion of W-like states in optical system. Laser Phys. 26(2), 025203 (2016)

    Article  ADS  Google Scholar 

  36. Li, K., Kong, F.Z., Yang, M., Ozaydin, F., Yang, Q., Cao, Z.L.: Generating multi-photon W-like states for perfect quantum teleportation and superdense coding. Quantum Inf. Process. 15(8), 3137–3150 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Li, K., Kong, F.Z., Yang, M., Yang, Q., Cao, Z.L.: Qubit-loss-free fusion of W states. Phys. Rev. A 94(6), 062315 (2016)

    Article  ADS  Google Scholar 

  38. Ji, Y.Q., Dai, C.M., Shao, X.Q., Yi, X.X.: Entangled state fusion with Rydberg atoms. Quantum Inf. Process. 16(10), 259 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system. Phys. Rev. A 87, 062337 (2013)

    Article  ADS  Google Scholar 

  40. Xing, Y., Qi, L., Cao, J., Wang, D.Y., Bai, C.H., Wang, H.F., Zhu, A.D., Zhang, S.: Spontaneous PT-symmetry breaking in non-Hermitian coupled-cavity array. Phys. Rev. A 96, 043810 (2017)

    Article  ADS  Google Scholar 

  41. Wang, H.F., Wen, J.J., Zhu, A.D., Zhang, S., Yeon, K.H.: Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity. Phys. Lett. A 377, 2870–2876 (2013)

    Article  ADS  MATH  Google Scholar 

  42. Wang, H.F., Zhu, A.D., Zhang, S.: One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. Opt. Lett. 39, 1489–1492 (2014)

    Article  ADS  Google Scholar 

  43. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New J. Phys. 13, 013021 (2011)

    Article  ADS  Google Scholar 

  44. Gumenyuk, R., Okhotnikov, O.G.: Temporal control of vector soliton bunching by slow/fast saturable absorption. J. Opt. Soc. Am. B 29, 1 (2012)

    Article  ADS  Google Scholar 

  45. Zang, X.P., Yang, M., Wang, X.C., Song, W., Cao, Z.L.: Fusion of W states in a cavity quantum electrodynamic system. Can. J. Phys. 93(5), 556–560 (2015)

    Article  ADS  Google Scholar 

  46. Zang, X.P., Yang, M., Ozaydin, F., Song, W., Cao, Z.L.: Generating multi-atom entangled W states via light-matter interface based fusion mechanism. Sci. Rep. 5, 16245 (2015)

    Article  ADS  Google Scholar 

  47. Ji, Y.Q., Shao, X.Q., Yi, X.X.: Fusing atomic W states via quantum Zeno dynamics. Sci. Rep. 7, 1378 (2017)

    Article  ADS  Google Scholar 

  48. Han, X., Guo, Q., Zhu, A.D., Zhang, S., Wang, H.F.: Effective W-state fusion strategies in nitrogen-vacancy centers via coupling to microtoroidal resonators. Opt. Express 25(15), 17701–17712 (2017)

    Article  ADS  Google Scholar 

  49. Hong, J., Lee, H.W.: Quasi-deterministic Generation of entangled atoms in a cavity. Phys. Rev. Lett. 89(23), 237901 (2002)

    Article  ADS  Google Scholar 

  50. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85(11), 2392–2395 (2000)

    Article  ADS  Google Scholar 

  51. Yang, M., Cao, Z.L.: Quantum information processing using coherent states in cavity QED. Phys. A 366(1), 243–249 (2006)

    Article  Google Scholar 

  52. Brune, M., Hagley, E., Dreyer, J., Maitre, X., Maali, A., Wunderlich, C., Raimond, J.M., Haroche, S.: Observing the progressive decoherence of the meter in a quantum measurement. Phys. Rev. Lett. 77(24), 4887–4890 (1996)

    Article  ADS  Google Scholar 

  53. Miller, A.J., Nam, S.W., Martinis, J.M., Sergienko, A.V.: Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83(4), 791–793 (2003)

    Article  ADS  Google Scholar 

  54. Wildfeuer, C.F., Pearlman, A.J., Chen, J., Fan, J., Migdall, A., Dowling, J.P.: Resolution and sensitivity of a Fabry-Perot interferometer with a photon-number-resolving detector. Phys. Rev. A 80(4), 043822 (2009)

    Article  ADS  Google Scholar 

  55. Marsili, F., Verma, V.B., Stern, J.A., Harrington, S., Lita, A.E., Gerrits, T., Vayshenker, I., Baek, B., Shaw, M.D., Mirin, R.P., Nam, S.W.: Detecting single infrared photons with 93% system efficiency. Nature 7, 210–214 (2013)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11274010 and the personnel department of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, CY., Kong, FZ., Yang, Q. et al. Qubit-loss-free fusion of atomic W states via photonic detection. Quantum Inf Process 17, 124 (2018). https://doi.org/10.1007/s11128-018-1893-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1893-y

Keywords

Navigation