Abstract
Let \(R={\mathbb {F}}_q+v{\mathbb {F}}_q+v^{2}{\mathbb {F}}_q\) be a finite non-chain ring, where q is an odd prime power and \(v^3=v\). In this paper, we propose two methods of constructing quantum codes from \((\alpha +\beta v+\gamma v^{2})\)-constacyclic codes over R. The first one is obtained via the Gray map and the Calderbank–Shor–Steane construction from Euclidean dual-containing \((\alpha +\beta v+\gamma v^{2})\)-constacyclic codes over R. The second one is obtained via the Gray map and the Hermitian construction from Hermitian dual-containing \((\alpha +\beta v+\gamma v^{2})\)-constacyclic codes over R. As an application, some new non-binary quantum codes are obtained.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \(F_3+vF_3\). Int. J. Quantum Inf. 12(6), 1450042(1-8) (2014)
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \(F_p+vF_p\). Int. J. Inf. Coding Theory 3(2), 137–144 (2015)
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \(F_q+uF_q+vF_q+uvF_q\). Quantum Inf. Process. 15(10), 4089–4098 (2016)
Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)
Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)
Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over \(A_2\). Int. J. Quantum Inform. 13(3), 1550031(1-9) (2015)
Edel, Y.: Some good quantum twisted codes. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html
Fan, Y., Wang, W., Li, R.: Binary construction of pure additive quantum codes with distance five or six. Quantum Inf. Process. 14(1), 183–200 (2015)
Gao, J.: Some results on linear codes over \({\mathbb{F}}_{p}+u{\mathbb{F}}_{p}+u^2{\mathbb{F}}_{p}\). J. Appl. Math. Comput. 47(1–2), 473–485 (2015)
Gao, J.: Quantum codes from cyclic codes over \({\mathbb{F}_{q}+v{\mathbb{F}}}_{q}+v^2{\mathbb{F}_{q}+v^3{\mathbb{F}}}_{q}\). Int. J. Quantum Inf. 13(8), 1550063(1-8) (2015)
Gao, J., Wang, X., Shi, M., Fu, F.: Gray maps on linear codes over \({\mathbb{F}}_{p}[v]/(v^{m}-v)\) and their appilcations. Sci. Sin. Math. 46(9), 1329–1336 (2016). ((in Chinese))
Gao, J., Wang, Y.: \(u\)-Constacyclic codes over \({\mathbb{F}}_{p}+u{\mathbb{F}}_{p}\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. (2018) https://doi.org/10.1007/s11128-017-1775-8
Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \(F_4+uF_4\). Int. J. Quantum Inf. 9(2), 689–700 (2011)
Kai, X., Zhu, S., Tang, Y.: Quantum negacyclic codes. Phys. Rev. A 88(1), 012326(1-5) (2013)
Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)
Liu, Y., Li, R., Lv, L., Ma, Y.: A class of constacyclic BCH codes and new quantum codes. Quantum Inf. Process. (2017) https://doi.org/10.1007/s11128-017-1533-y
Liu, X., Liu, H.: Quantum codes from linear codes over finite chain rings. Quantum Inf. process. (2017) https://doi.org/10.1007/s11128-017-1695-7
La Guardia, G.G.: Quantum codes derived from cyclic codes. Int. J. Theor. Phys. 56(8), 2479–2484 (2017)
Qian, J., Ma, W., Gou, W.: Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7(6), 1277–1283 (2009)
Qian, J., Zhang, L.: Improved constructions for nonbinary quantum BCH codes. Int. J. Theor. Phys. 56(4), 1355–1363 (2017)
Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52(4), 2493–2496 (1995)
Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. A Math. Phys. Eng. Sci. 452(1954), 2551–2577 (1996)
Thangaraaj, A., MacLaughlin, S.W.: Quantum codes from cyclic codes over \(GF(4^{m})\). IEEE Trans. Inf. Theory 47(3), 1176–1178 (2001)
Tang, Y., Zhu, S., Kai, X., Ding, J.: New quantum codes from dual-containing cyclic codes over finite rings. Quantum Inf. process. 15(11), 4489–4500 (2016)
Acknowledgements
Part of this work was done when Gao was visiting the Chern Institute of Mathematics, Nankai University. Gao would like to thank the kindly invitation. This research is supported by the National Key Basic Research Program of China (Grant No. 2013CB834204) and the National Natural Science Foundation of China (Grant Nos. 61171082, 61571243, 11701336, 11626144 and 11671235).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ma, F., Gao, J. & Fu, FW. Constacyclic codes over the ring \({\mathbb {F}}_q+v{\mathbb {F}}_q+v^{2}{\mathbb {F}}_q\) and their applications of constructing new non-binary quantum codes. Quantum Inf Process 17, 122 (2018). https://doi.org/10.1007/s11128-018-1898-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1898-6