Abstract
We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger–Horne–Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system–environment interaction and the system–environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Schrodinger, E.: Die gegenwartige situation in der quantenmechanik. Naturwissenschaften 23(50), 844 (1935)
Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661 (1991)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)
Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: A subsystem-independent generalization of entanglement. Phys. Rev. Lett. 92(10) (2004)
Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247 (2000)
Berkley, A.J., Xu, H., Ramos, R.C., Gubrud, M.A., Strauch, F.W., Johnson, P.R., Anderson, J.R., Dragt, A.J., Lobb, C.J., Wellstood, F.C.: Entangled macroscopic quantum states in two superconducting qubits. Science 300(5625), 1548 (2003)
Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature 449(7161), 443 (2007)
Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret, M.H.: Manipulating the quantum state of an electrical circuit. Science 296(5569), 886 (2002)
Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005), 162 (2004)
Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453(7198), 1031 (2008)
Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74(10), 104401 (2011)
Yamamoto, T., Watanabe, M., You, J.Q., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Nori, F., Tsai, J.S.: Spectroscopy of superconducting charge qubits coupled by a Josephson inductance. Phys. Rev. B 77(6), 064505 (2008)
DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two qubit algorithms with a superconducting quantum processor. Nature 460(7252), 240 (2009)
Herrera, M., Reina, J.H.: Quantum entanglement and correlations in superconducting flux qubits. J. Supercond. Novel Magn. 25(7), 2149 (2012)
Xue, Z.Y., Li, Y.F., Zhou, J., Gao, Y.M., Zhang, G.: Tunable interaction of superconducting flux qubits in circuit QED. Quantum Inf. Process. 15(2), 721 (2016)
Hofheinz, M., Wang, H., Ansmann, M., Bialczak, R.C., Lucero, E., Neeley, M., OConnell, A.D., Sank, D., Wenner, J., Martinis, J.M., Cleland, A.N.: Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459(7246), 546 (2009)
Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003)
Marzolino, U.: Entanglement in dissipative dynamics of identical particles. EPL 104(4), 40004 (2013)
Hur, K.L.: Entanglement, decoherence, and dynamics of a two-state system. J. Mod. Opt. 56(18–19), 2106 (2009)
Wu, T., Shi, J., Yu, L., He, J., Ye, L.: Quantum correlation of qubit-reservoir system in dissipative environments. Sci. Rep. 7(1), 8625 (2017)
Anwar, S.J., Ramzan, M., Khan, M.K.: Dynamics of entanglement and quantum Fisher information for N-level atomic system under intrinsic decoherence. Quantum Inf. Process. 16(6), 142 (2017)
Makhlin, Y., Schn, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73(2), 357 (2001)
Paladino, E., Faoro, L., Falci, G., Fazio, R.: Decoherence and \(1/f\) noise in Josephson qubits. Phys. Rev. Lett. 88(22), 228304 (2002)
Makhlin, Y., Shnirman, A.: Dephasing of solid-state qubits at optimal points. Phys. Rev. Lett. 92(17), 178301 (2004)
Metwally, N., Eleuch, H., Obada, A.S.: Sudden death and rebirth of entanglement for different dimensional systems driven by a classical random external field. Laser Phys. Lett. 13(10), 105206 (2016)
Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93(14), 140404 (2004)
Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78(6), 060302(R) (2008)
An, N.B., Kim, J., Kim, K.: Entanglement dynamics of three interacting two-level atoms within a common structured environment. Phys. Rev. A 84(2), 022329 (2011)
Buscemi, F., Bordone, P., Bertoni, A.: Validity of the single-particle approach for electron transport in quantum wires assisted by surface acoustic waves. J. Phys.: Condens. Matter 21(30), 305303 (2009)
Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99(16), 160502 (2007)
Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.: Effects of classical environmental noise on entanglement and quantum discord dynamics. Int. J. Quant. Inf. 10(08), 1241005 (2012)
Benedetti, C., Paris, M.G.A., Buscemi, F., Bordone, P.: Time-evolution of entanglement and quantum discord of bipartite systems subject to \(1/f^\alpha \) noise, (IEEE, 2013), pp. 14. https://doi.org/10.1109/ICNF.2013.6578952
Zhou, D., Lang, A., Joynt, R.: Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise. Quantum Inf. Process. 9(6), 727 (2010)
De, A., Lang, A., Zhou, D., Joynt, R.: Suppression of decoherence and disentanglement by the exchange interaction. Phys. Rev. A 83(4), 042331 (2011)
Leggio, B., Lo Franco, R., Soares-Pinto, D.O., Horodecki, P., Compagno, G.: Distributed correlations and information flows within a hybrid multipartite quantum-classical system. Phys. Rev. A 92(3), 032311 (2015)
DArrigo, A., Benenti, G., Lo Franco, R., Falci, G., Paladino, E.: Hidden entanglement, system-environment information flow and non-Markovianity. Int. J. Quantum Inf. 12(02), 1461005 (2014)
Nuzzi, D., Cuccoli, A., Vaia, R., Verrucchi, P.: Quantum correlations between distant qubits conveyed by large-\(S\) spin chains. Phys. Rev. B 96(5), 054449 (2017)
Xu, J.S., Sun, K., Li, C.F., Xu, X.Y., Guo, G.C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment backaction. Nat. Commun. 4, 2851 (2013)
Orieux, A., DArrigo, A., Ferranti, G., Franco, R.L., Benenti, G., Paladino, E., Falci, G., Sciarrino, F., Mataloni, P.: Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5, 8575 (2015)
Hu, M.L.: Disentanglement, Bell-nonlocality violation and teleportation capacity of the decaying tripartite states. Ann. Phys. 327(9), 2332 (2012)
Ramzan, M.: Quantum discord amplification of fermionic systems in an accelerated frame. Quantum Inf. Process. 13(2), 259 (2014)
Guo, J.L., Wei, J.L.: Dynamics and protection of tripartite quantum correlations in a thermal bath. Ann. Phys. 354, 522 (2015)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000)
Siomau, M., Fritzsche, S.: Evolution equation for entanglement of multiqubit systems. Phys. Rev. A 82(6), 062327 (2010)
Vidal, G.: Entanglement monotones. J. Mod. Opt. 47(2–3), 355 (2000)
Weinstein, Y.S.: Tripartite entanglement witnesses and entanglement sudden death. Phys. Rev. A 79(1) (2009)
Weinstein, Y.S.: Entanglement dynamics in three-qubit x states. Phys. Rev. A 82(3), 032326 (2010)
Guhne, O., Toth, G.: Entanglement detection. Phys. Rep. 474(1–6), 1 (2009)
Biham, E., Brassard, G., Kenigsberg, D., Mor, T.: Quantum computing without entanglement. Theor. Comput. Sci. 320(1), 15 (2004)
Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101(20), 200501 (2008)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34(35), 6899 (2001)
Werlang, T., Souza, S., Fanchini, F.F., Boas, C.J.V.: Robustness of quantum discord to sudden death. Phys. Rev. A 80(2), 024103 (2009)
Maziero, J., Cleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80(4) (2009)
Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104(20), 200401 (2010)
Xu, J.S., Xu, X.Y., Li, C.F., Zhang, C.J., Zou, X.B., Guo, G.C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 1005 (2010)
Cianciaruso, M., Bromley, T.R., Roga, W., Lo Franco, R., Adesso, G.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)
Aaronson, B., Lo Franco, R., Adesso, G.: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88(1), 012120 (2013)
Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100(5), 050502 (2008)
Bennett, C.H., Grudka, A., Horodecki, M., Horodecki, P., Horodecki, R.: Postulates for measures of genuine multipartite correlations. Phys. Rev. A 83(1), 012312 (2011)
Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84(4), 042109 (2011)
Chakrabarty, I., Agrawal, P., Pati, A.K.: Quantum dissension: generalizing quantum discord for three-qubit states. Eur. Phys. J. D 65(3), 605 (2011)
Giorgi, G.L., Bellomo, B., Galve, F., Zambrini, R.: Genuine quantum and classical correlations in multipartite systems. Phys. Rev. Lett. 107(19), 190501 (2011)
Zhao, L., Hu, X., Yue, R.H., Fan, H.: Genuine correlations of tripartite system. Quantum Inf. Process. 12(7), 2371 (2013)
Beggi, A., Buscemi, F., Bordone, P.: Analytical expression of genuine tripartite quantum discord for symmetrical X-states. Quantum Inf. Process. 14(2), 573 (2015)
Zhou, J.: Dynamics of tripartite geometric quantifiers of correlations in a quantum spin system. Phys. Rev. A 87(6) (2013)
Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87(4), 042310 (2013)
Tchoffo, M., Kenfack, L.T., Fouokeng, G.C., Fai, L.C.: Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise. Eur. Phys. J. Plus 131(10), 380 (2016)
Lionel, T.K., Martin, T., Collince, F.G., Fai, L.C.: Effects of static noise on the dynamics of quantum correlations for a system of three qubits. Int. J. Mod. Phys. B p. 1750046 (2016)
Sabin, C., Garcia-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48(3), 435 (2008)
Cai, J.T., Abliz, A.: Tripartite correlations in a Heisenberg XXZ spin ring in thermal equilibrium. Phys. A 392(10), 2607 (2013)
Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85(7), 1560 (2000)
Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44(10), 36 (1991)
Serafini, A., Paris, M.G.A., Illuminati, F., Siena, S.D.: Quantifying decoherence in continuous variable systems. J. Opt. B: Quantum Semiclass. Opt. 7(4), R19 (2005)
Bose, S., Vedral, V.: Mixedness and teleportation. Phys. Rev. A 61(4), 040101 (2000)
Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1998)
Devoret, M.H., Martinis, J.M.: in Experimental Aspects of Quantum Computing, ed. by H.O. Everitt (Springer US, Boston, MA, 2005), p. 163203. https://doi.org/10.1007/0-387-27732-3-12
Ramakrishna, V., Zhou, H.: On the exponential of matrices in su (4). J. Phys. A: Math. Gen. 39(12), 3021 (2006)
Niskanen, A.O., Harrabi, K., Yoshihara, F., Nakamura, Y., Lloyd, S., Tsai, J.S.: Quantum coherent tunable coupling of superconducting qubits. Science 316(5825), 723 (2007)
Harris, R., Johansson, J., Berkley, A.J., Johnson, M.W., Lanting, T., Han, S., Bunyk, P., Ladizinsky, E., Oh, T., Perminov, I., Tolkacheva, E., Uchaikin, S., Chapple, E.M., Enderud, C., Rich, C., Thom, M., Wang, J., Wilson, B., Rose, G.: Experimental demonstration of a robust and scalable flux qubit. Phys. Rev. B 81(13), 134510 (2010)
Amir, A., Lahini, Y., Perets, H.B.: Classical diffusion of a quantum particle in a noisy environment. Phys. Rev. E 79(5), 050105 (2009)
Lahini, Y., Bromberg, Y., Christodoulides, D.N., Silberberg, Y.: Quantum correlations in two-particle Anderson localization. Phys. Rev. Lett. 105(16), 163905 (2010)
Thompson, C., Vemuri, G., Agarwal, G.S.: Anderson localization with second quantized fields in a coupled array of waveguides. Phys. Rev. A 82(5), 053805 (2010)
Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81(5), 052107 (2010)
Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit Xstates. Phys. Rev. A 81(4), 042105 (2010)
Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Dynamics of quantum correlations in colored-noise environments. Phys. Rev. A 87(5), 052328 (2013)
Author information
Authors and Affiliations
Corresponding author
Appendix: Explicit forms of the various density matrices
Appendix: Explicit forms of the various density matrices
-
Different environments coupling: For the case of local coupling to different environments with a static noise, we set \(x_A \ne x_B \ne x_C\), and the density matrix for the global system at time t is derived from:
$$\begin{aligned} {\rho _{de}}\left( t\right) =\int _{d^{-}}^{d^{+}}\int _{d^{-}}^ {d^{+}}\int _{d^{-}}^{d^{+}}{\hbox {d}{x_{A}}\hbox {d}{x_{B}}\hbox {d}{x_{C}}P\left( {x_{A}}\right) P\left( {x_{B}}\right) P\left( {x_{C}}\right) \rho \left( {{x_{A}},{x_{B}},{x_{C}},t}\right) }\nonumber \\ \end{aligned}$$(29)where \( d^{\pm } = x_0 \pm \frac{{x_{m}}}{2} \) and \( \rho \left( {{x_{A}},{x_{B}},{x_{C}},t}\right) ={U}\left( {{x_{A}},{x_{B}},{x_{C}},t}\right) \rho (0)U^{\dagger }({x_{A}},{x_{B}},{x_{C}},t). \) Explicitly, \(\rho _{de}(t)\) reads:
$$\begin{aligned} \rho _{de}(t)=\frac{1}{2}\begin{pmatrix} \alpha _{de} &{} \gamma _{de} &{} \gamma _{de} &{} \mu _{de} &{} \gamma _{de} &{} \mu _{de} &{} \mu _{de} &{} \alpha _{de}e^{6i\theta }\\ \gamma _{de}^{*} &{} \vartheta _{de} &{} \tau _{de} &{} \kappa _{de} &{} \tau _{de} &{} \kappa _{de} &{} \chi _{de} &{} \pi _{de}\\ \gamma _{de}^{*} &{} \tau _{de} &{} \vartheta _{de} &{} \kappa _{de} &{} \tau _{de} &{} \chi _{de} &{} \kappa _{de} &{} \pi _{de}\\ \mu _{de}^{*} &{} \kappa _{de}^{*} &{} \kappa _{de}^{*} &{} \vartheta _{de} &{} \chi _{de}^{*} &{} \tau _{de} &{} \tau _{de} &{} \varepsilon _{de}\\ \gamma _{de}^{*} &{} \tau _{de} &{} \tau _{de} &{} \chi _{de} &{} \vartheta _{de} &{} \kappa _{de} &{} \kappa _{de} &{} \pi _{de}\\ \mu _{de}^{*} &{} \kappa _{de}^{*} &{} \chi _{de}^{*} &{} \tau _{de} &{} \kappa _{de}^{*} &{} \vartheta _{de} &{} \tau _{de} &{} \varepsilon _{de}\\ \mu _{de}^{*} &{} \chi _{de}^{*} &{} \kappa _{de}^{*} &{} \tau _{de} &{} \kappa _{de}^{*} &{} \tau _{de} &{} \vartheta _{de} &{} \varepsilon _{de}\\ \alpha _{de}e^{-6i\theta } &{} \pi _{de}^{*} &{} \pi _{de}^{*} &{} \varepsilon _{de}^{*} &{} \pi _{de}^{*} &{} \varepsilon _{de}^{*} &{} \varepsilon _{de}^{*} &{} \alpha _{de} \end{pmatrix} \end{aligned}$$(30)where
$$\begin{aligned} \alpha _{de}=\frac{1}{4}\left[ 1+3p\beta _{de}\cos ^{2}(\nu tx_{0})\right] ,\quad \tau _{de}=\frac{p}{4}\beta _{de}\sin ^{2}\left( \nu tx_{0}\right) ,\\ \pi _{de}=\frac{p}{4}e^{4i\theta }\beta _{de}\left[ i\sin (2\nu tx_{0})-\sin ^{2}(\nu tx_{0})\right] ,\quad \chi _{de}=\pi _{de}e^{2i\theta } \\ \gamma _{de}=-\frac{p}{4}e^{2i\theta }\beta _{de}\left[ \sin ^{2}(\nu tx_{0})+i\sin (2\nu tx_{0})\right] ,\quad \mu _{de}=\gamma _{de}e^{2i\theta } \\ \varepsilon _{de}=\frac{p}{4}e^{2i\theta }\beta _{de}\left[ -\sin ^{2}(\nu tx_{0})+i\sin (2\nu tx_{0})\right] ,\quad \kappa _{de}=\tau _{de}e^{2i\theta }\\ \vartheta _{de}=\frac{1}{4}\left[ 1-p\beta _{de}\cos ^{2}(\nu tx_{0})\right] ,\quad \beta _{de}=\left( \frac{2\sin \left( \nu tx_{m}/2\right) }{\nu tx_{m}}\right) ^{2} \end{aligned}$$ -
Common environment coupling: Here we set \(x_A = x_B = x_C = x\). The time-evolved state is derived from:
$$\begin{aligned} {\rho _{ce}}\left( t\right) =\int _{d^{-}}^{d^{+}}{\hbox {d}{x} P\left( {x}\right) \rho \left( {{x},,t}\right) }, \end{aligned}$$(31)where \( \rho \left( {{x},t}\right) ={U}\left( {{x},t}\right) \rho (0) U^{\dag }\left( {x,t}\right) , \) and reads:
$$\begin{aligned} \rho _{ce}(t)=\frac{1}{2}\begin{pmatrix}\alpha _{ce} &{} \,\,\gamma _{ce}\,\, &{} \,\,\gamma _{ce}\,\, &{} \,\,\mu _{ce}\,\, &{} \,\,\gamma _{ce}\,\, &{} \,\,\mu _{ce}\,\, &{} \,\,\mu _{ce}\,\, &{} \,\alpha _{ce}e^{6i\theta }\\ \gamma _{ce}^{*} &{} \vartheta _{ce} &{} \tau _{ce} &{} \chi _{ce} &{} \tau _{ce} &{} \chi _{ce} &{} \chi _{ce} &{} \pi _{ce}\\ \gamma _{ce}^{*} &{} \tau _{ce} &{} \vartheta _{ce} &{} \chi _{ce} &{} \tau _{ce} &{} \chi _{ce} &{} \chi _{ce} &{} \pi _{ce}\\ \mu _{ce}^{*} &{} \chi _{ce}^{*} &{} \chi _{ce}^{*} &{} \vartheta _{ce} &{} \chi _{ce}^{*} &{} \tau _{ce} &{} \tau _{ce} &{} \varepsilon _{ce}\\ \gamma _{ce}^{*} &{} \tau _{ce} &{} \tau _{ce} &{} \chi _{ce} &{} \vartheta _{ce} &{} \chi _{ce} &{} \chi _{ce} &{} \pi _{ce}\\ \mu _{ce}^{*} &{} \chi _{ce}^{*} &{} \chi _{ce}^{*} &{} \tau _{ce} &{} \chi _{ce}^{*} &{} \vartheta _{ce} &{} \tau _{ce} &{} \varepsilon _{ce}\\ \mu _{ce}^{*} &{} \chi _{ce}^{*} &{} \chi _{ce}^{*} &{} \tau _{ce} &{} \chi _{ce}^{*} &{} \tau _{ce} &{} \vartheta _{ce} &{} \varepsilon _{ce}\\ \alpha _{ce}e^{-6i\theta } &{} \pi _{ce}^{*} &{} \pi _{ce}^{*} &{} \varepsilon _{ce}^{*} &{} \pi _{ce}^{*} &{} \varepsilon _{ce}^{*} &{} \varepsilon _{ce}^{*} &{} \alpha _{ce} \end{pmatrix} \end{aligned}$$(32)with
$$\begin{aligned} \alpha _{ce}= & {} \frac{1}{8}\left[ 2+3p\left\{ 1+\beta _{ce}\cos (2\nu tx_{0})\right\} \right] , \\ \gamma _{ce}= & {} -\frac{p}{8}e^{2i\theta }\left[ 1-\beta _{ce}\left\{ \cos (2\nu tx_{0})-2i\sin (2\nu tx_{0})\right\} \right] , \\ \tau _{ce}= & {} \frac{p}{8}\left[ 1-\beta _{ce}\cos (2\nu tx_{0})\right] ,\quad \mu _{ce}=\gamma _{ce}e^{2i\theta },\quad \varepsilon _{ce}=\pi _{ce}e^{-2i\theta }, \\ \pi _{ce}= & {} \frac{p}{8}e^{4i\theta }\left[ -1+\beta _{ce}\left\{ \cos (2\nu tx_{0})+2i\sin (2\nu tx_{0})\right\} \right] ,\quad \chi _{ce}=\tau _{ce}e^{2i\theta }, \\ \vartheta _{ce}= & {} \frac{1}{8}\left[ 2-p\left\{ 1+\beta _{ce}\cos (2\nu tx_{0})\right\} \right] \quad \text {and} \quad \beta _{ce}=\frac{\sin (\nu tx_{m})}{\nu tx_{m}}. \end{aligned}$$ -
Bipartite environments coupling: Here, \(x_A = x_B \ne x_C\), and the density matrix \(\rho _{be}\) is derived from:
$$\begin{aligned} {\rho _{be}}\left( t\right) =\int _{d^{-}}^{d^{+}} {\int _{d^{-}}^{d^{+}}}{\hbox {d}{x_{A}}\hbox {d}{x_{C}} P\left( {x_{A}}\right) P\left( {x_{C}}\right) \rho \left( {{x_{A}},{x_{C}},t}\right) } \end{aligned}$$(33)where \( \rho \left( {{x_{A}},{x_{C}},t}\right) ={\mathcal {U}}\left( {{x_{A}},{x_{C}},t}\right) \rho (0)\mathcal {U}^{\dag }\left( {{x_{A}},{x_{C}},t}\right) . \) It finally reads:
$$\begin{aligned} \rho _{be}(t)=\frac{1}{2}\begin{pmatrix}\alpha _{be} &{} \,\,\gamma _{be}\,\, &{} \,\,\mu _{be}\,\, &{} \,\,\lambda _{be}\,\, &{} \,\,\mu _{be}\,\, &{} \,\,\lambda _{be}\,\, &{} \,\,\pi _{be}\,\, &{} \,\tau _{be}\\ \gamma _{be}^{*} &{} \vartheta _{be} &{} \kappa _{be} &{} \xi _{be} &{} \kappa _{be} &{} \xi _{be} &{} \chi _{be} &{} \varLambda _{be}\\ \mu _{be}^{*} &{} \kappa _{be}^{*} &{} \varpi _{be} &{} \varXi _{de} &{} \eta _{be} &{} \varXi _{de} &{} \varDelta _{be} &{} \varepsilon _{be}\\ \lambda _{be}^{*} &{} \xi _{be}^{*} &{} \varXi _{de}^{*} &{} \varpi _{be} &{} \varXi _{de}^{*} &{} \eta _{be} &{} \kappa _{be}^{*} &{} T\\ \mu _{be}^{*} &{} \kappa _{be}^{*} &{} \eta _{be} &{} \varXi _{de} &{} \varpi _{be} &{} \varXi _{de} &{} \varDelta _{be} &{} \varepsilon _{be}\\ \lambda _{be}^{*} &{} \xi _{be}^{*} &{} \varXi _{de}^{*} &{} \eta _{be} &{} \varXi _{de}^{*} &{} \varpi _{be} &{} \kappa _{be}^{*} &{} T\\ \pi _{be}^{*} &{} \chi _{be}^{*} &{} \varDelta _{be}^{*} &{} \kappa _{be} &{} \varDelta _{be}^{*} &{} \kappa _{be} &{} \vartheta _{be} &{} \nu _{de}\\ \tau _{be}^{*} &{} \varLambda _{be}^{*} &{} \varepsilon _{be}^{*} &{} T^{*} &{} \varepsilon _{be}^{*} &{} T^{*} &{} \nu _{de}^{*} &{} \alpha _{be} \end{pmatrix}, \end{aligned}$$(34)where
$$\begin{aligned} \alpha _{be}= & {} \frac{1}{8}\left[ 2+p\left\{ 1+\beta _{ce}\cos (2\nu tx_{0})+4\beta _{de}\cos ^{2}(\nu tx_{0})\right\} \right] , \\ \gamma _{be}= & {} \frac{p}{8}e^{2i\theta }\left[ -1+\beta _{ce}\cos (2\nu tx_{0})-2i\beta _{de}\sin (2\nu tx_{0})\right] ,\quad \pi _{be}=\gamma _{be}e^{2i\theta }, \\ \tau _{be}= & {} \frac{p}{8}e^{6i\theta }\left[ 3+\beta _{ce}\cos (2\nu tx_{0})+4\beta _{de}\cos ^{2}(\nu tx_{0})\right] ,\quad \varLambda _{be}=\gamma _{be}^{*}e^{6i\theta }, \\ \chi _{be}= & {} \frac{p}{8}e^{2i\theta }\left[ 3+\beta _{ce}\cos (2\nu tx_{0})-4\beta _{de}\cos ^{2}(\nu tx_{0})\right] ,\quad \nu _{de}=\varLambda _{be}e^{-2i\theta }, \\ \vartheta _{be}= & {} \frac{1}{8}\left[ 2+p\left\{ 1+\beta _{ce}\cos (2\nu tx_{0})-4\beta _{de}\cos ^{2}(\nu tx_{0})\right\} \right] , \\ \kappa _{be}= & {} \frac{ip}{8}\left[ -\beta _{ce}\sin (2\nu tx_{0})+2\beta _{de}\sin (\nu tx_{0})e^{-i\nu tx_{0}}\right] ,\quad \xi _{be}=\kappa _{be}e^{2i\theta }, \\ \mu _{be}= & {} -\frac{ip}{8}e^{2i\theta }\left[ \beta _{ce}\sin (2\nu tx_{0})+2\beta _{de}\sin (\nu tx_{0})e^{-i\nu tx_{0}}\right] ,\quad \varDelta _{be}=\kappa _{be}^{*}e^{2i\theta } \\ \varpi _{be}= & {} \frac{1}{8}\left[ 2-p\left\{ 1+\beta _{ce}\cos (2\nu tx_{0})\right\} \right] ,\quad \lambda _{be}=\mu _{be}e^{2i\theta }, \\ \eta _{be}= & {} \frac{p}{8}\left[ 1-\beta _{ce}\cos (2\nu tx_{0})\right] ,\quad \varXi _{de}=\eta _{be}e^{2i\theta }, \\ \varepsilon _{be}= & {} \frac{ip}{8}e^{4i\theta }\left[ \beta _{ce}\sin (2\nu tx_{0})+2\beta _{de}\sin (\nu tx_{0})e^{i\nu tx_{0}}\right] . \end{aligned}$$
Rights and permissions
About this article
Cite this article
Arthur, T.T., Martin, T. & Fai, L.C. Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise. Quantum Inf Process 17, 136 (2018). https://doi.org/10.1007/s11128-018-1899-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1899-5