Skip to main content
Log in

Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger–Horne–Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system–environment interaction and the system–environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrodinger, E.: Die gegenwartige situation in der quantenmechanik. Naturwissenschaften 23(50), 844 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    Article  ADS  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  7. Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: A subsystem-independent generalization of entanglement. Phys. Rev. Lett. 92(10) (2004)

  8. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247 (2000)

    Article  ADS  MATH  Google Scholar 

  9. Berkley, A.J., Xu, H., Ramos, R.C., Gubrud, M.A., Strauch, F.W., Johnson, P.R., Anderson, J.R., Dragt, A.J., Lobb, C.J., Wellstood, F.C.: Entangled macroscopic quantum states in two superconducting qubits. Science 300(5625), 1548 (2003)

    Article  ADS  Google Scholar 

  10. Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature 449(7161), 443 (2007)

    Article  ADS  Google Scholar 

  11. Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret, M.H.: Manipulating the quantum state of an electrical circuit. Science 296(5569), 886 (2002)

    Article  ADS  Google Scholar 

  12. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005), 162 (2004)

    Article  ADS  Google Scholar 

  13. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453(7198), 1031 (2008)

    Article  ADS  Google Scholar 

  14. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74(10), 104401 (2011)

    Article  ADS  Google Scholar 

  15. Yamamoto, T., Watanabe, M., You, J.Q., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Nori, F., Tsai, J.S.: Spectroscopy of superconducting charge qubits coupled by a Josephson inductance. Phys. Rev. B 77(6), 064505 (2008)

    Article  ADS  Google Scholar 

  16. DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two qubit algorithms with a superconducting quantum processor. Nature 460(7252), 240 (2009)

    Article  ADS  Google Scholar 

  17. Herrera, M., Reina, J.H.: Quantum entanglement and correlations in superconducting flux qubits. J. Supercond. Novel Magn. 25(7), 2149 (2012)

    Article  Google Scholar 

  18. Xue, Z.Y., Li, Y.F., Zhou, J., Gao, Y.M., Zhang, G.: Tunable interaction of superconducting flux qubits in circuit QED. Quantum Inf. Process. 15(2), 721 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hofheinz, M., Wang, H., Ansmann, M., Bialczak, R.C., Lucero, E., Neeley, M., OConnell, A.D., Sank, D., Wenner, J., Martinis, J.M., Cleland, A.N.: Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459(7246), 546 (2009)

    Article  ADS  Google Scholar 

  20. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Marzolino, U.: Entanglement in dissipative dynamics of identical particles. EPL 104(4), 40004 (2013)

    Article  ADS  Google Scholar 

  22. Hur, K.L.: Entanglement, decoherence, and dynamics of a two-state system. J. Mod. Opt. 56(18–19), 2106 (2009)

    Article  ADS  MATH  Google Scholar 

  23. Wu, T., Shi, J., Yu, L., He, J., Ye, L.: Quantum correlation of qubit-reservoir system in dissipative environments. Sci. Rep. 7(1), 8625 (2017)

    Article  ADS  Google Scholar 

  24. Anwar, S.J., Ramzan, M., Khan, M.K.: Dynamics of entanglement and quantum Fisher information for N-level atomic system under intrinsic decoherence. Quantum Inf. Process. 16(6), 142 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Makhlin, Y., Schn, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73(2), 357 (2001)

    Article  ADS  Google Scholar 

  26. Paladino, E., Faoro, L., Falci, G., Fazio, R.: Decoherence and \(1/f\) noise in Josephson qubits. Phys. Rev. Lett. 88(22), 228304 (2002)

    Article  ADS  Google Scholar 

  27. Makhlin, Y., Shnirman, A.: Dephasing of solid-state qubits at optimal points. Phys. Rev. Lett. 92(17), 178301 (2004)

    Article  ADS  Google Scholar 

  28. Metwally, N., Eleuch, H., Obada, A.S.: Sudden death and rebirth of entanglement for different dimensional systems driven by a classical random external field. Laser Phys. Lett. 13(10), 105206 (2016)

    Article  ADS  Google Scholar 

  29. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93(14), 140404 (2004)

    Article  ADS  Google Scholar 

  30. Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78(6), 060302(R) (2008)

    Article  ADS  Google Scholar 

  31. An, N.B., Kim, J., Kim, K.: Entanglement dynamics of three interacting two-level atoms within a common structured environment. Phys. Rev. A 84(2), 022329 (2011)

    Article  ADS  Google Scholar 

  32. Buscemi, F., Bordone, P., Bertoni, A.: Validity of the single-particle approach for electron transport in quantum wires assisted by surface acoustic waves. J. Phys.: Condens. Matter 21(30), 305303 (2009)

    Google Scholar 

  33. Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99(16), 160502 (2007)

    Article  ADS  Google Scholar 

  34. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.: Effects of classical environmental noise on entanglement and quantum discord dynamics. Int. J. Quant. Inf. 10(08), 1241005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Benedetti, C., Paris, M.G.A., Buscemi, F., Bordone, P.: Time-evolution of entanglement and quantum discord of bipartite systems subject to \(1/f^\alpha \) noise, (IEEE, 2013), pp. 14. https://doi.org/10.1109/ICNF.2013.6578952

  36. Zhou, D., Lang, A., Joynt, R.: Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise. Quantum Inf. Process. 9(6), 727 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. De, A., Lang, A., Zhou, D., Joynt, R.: Suppression of decoherence and disentanglement by the exchange interaction. Phys. Rev. A 83(4), 042331 (2011)

    Article  ADS  Google Scholar 

  38. Leggio, B., Lo Franco, R., Soares-Pinto, D.O., Horodecki, P., Compagno, G.: Distributed correlations and information flows within a hybrid multipartite quantum-classical system. Phys. Rev. A 92(3), 032311 (2015)

    Article  ADS  Google Scholar 

  39. DArrigo, A., Benenti, G., Lo Franco, R., Falci, G., Paladino, E.: Hidden entanglement, system-environment information flow and non-Markovianity. Int. J. Quantum Inf. 12(02), 1461005 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nuzzi, D., Cuccoli, A., Vaia, R., Verrucchi, P.: Quantum correlations between distant qubits conveyed by large-\(S\) spin chains. Phys. Rev. B 96(5), 054449 (2017)

    Article  ADS  Google Scholar 

  41. Xu, J.S., Sun, K., Li, C.F., Xu, X.Y., Guo, G.C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment backaction. Nat. Commun. 4, 2851 (2013)

    Article  Google Scholar 

  42. Orieux, A., DArrigo, A., Ferranti, G., Franco, R.L., Benenti, G., Paladino, E., Falci, G., Sciarrino, F., Mataloni, P.: Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5, 8575 (2015)

    Article  ADS  Google Scholar 

  43. Hu, M.L.: Disentanglement, Bell-nonlocality violation and teleportation capacity of the decaying tripartite states. Ann. Phys. 327(9), 2332 (2012)

    Article  ADS  MATH  Google Scholar 

  44. Ramzan, M.: Quantum discord amplification of fermionic systems in an accelerated frame. Quantum Inf. Process. 13(2), 259 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Guo, J.L., Wei, J.L.: Dynamics and protection of tripartite quantum correlations in a thermal bath. Ann. Phys. 354, 522 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  47. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  48. Siomau, M., Fritzsche, S.: Evolution equation for entanglement of multiqubit systems. Phys. Rev. A 82(6), 062327 (2010)

    Article  ADS  Google Scholar 

  49. Vidal, G.: Entanglement monotones. J. Mod. Opt. 47(2–3), 355 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  50. Weinstein, Y.S.: Tripartite entanglement witnesses and entanglement sudden death. Phys. Rev. A 79(1) (2009)

  51. Weinstein, Y.S.: Entanglement dynamics in three-qubit x states. Phys. Rev. A 82(3), 032326 (2010)

    Article  ADS  Google Scholar 

  52. Guhne, O., Toth, G.: Entanglement detection. Phys. Rep. 474(1–6), 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  53. Biham, E., Brassard, G., Kenigsberg, D., Mor, T.: Quantum computing without entanglement. Theor. Comput. Sci. 320(1), 15 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101(20), 200501 (2008)

    Article  ADS  Google Scholar 

  55. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  56. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34(35), 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Werlang, T., Souza, S., Fanchini, F.F., Boas, C.J.V.: Robustness of quantum discord to sudden death. Phys. Rev. A 80(2), 024103 (2009)

    Article  ADS  Google Scholar 

  58. Maziero, J., Cleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80(4) (2009)

  59. Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104(20), 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  60. Xu, J.S., Xu, X.Y., Li, C.F., Zhang, C.J., Zou, X.B., Guo, G.C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 1005 (2010)

  61. Cianciaruso, M., Bromley, T.R., Roga, W., Lo Franco, R., Adesso, G.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

    Article  ADS  Google Scholar 

  62. Aaronson, B., Lo Franco, R., Adesso, G.: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88(1), 012120 (2013)

    Article  ADS  Google Scholar 

  63. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100(5), 050502 (2008)

    Article  ADS  Google Scholar 

  64. Bennett, C.H., Grudka, A., Horodecki, M., Horodecki, P., Horodecki, R.: Postulates for measures of genuine multipartite correlations. Phys. Rev. A 83(1), 012312 (2011)

    Article  ADS  Google Scholar 

  65. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84(4), 042109 (2011)

    Article  ADS  Google Scholar 

  66. Chakrabarty, I., Agrawal, P., Pati, A.K.: Quantum dissension: generalizing quantum discord for three-qubit states. Eur. Phys. J. D 65(3), 605 (2011)

    Article  ADS  Google Scholar 

  67. Giorgi, G.L., Bellomo, B., Galve, F., Zambrini, R.: Genuine quantum and classical correlations in multipartite systems. Phys. Rev. Lett. 107(19), 190501 (2011)

    Article  ADS  Google Scholar 

  68. Zhao, L., Hu, X., Yue, R.H., Fan, H.: Genuine correlations of tripartite system. Quantum Inf. Process. 12(7), 2371 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Beggi, A., Buscemi, F., Bordone, P.: Analytical expression of genuine tripartite quantum discord for symmetrical X-states. Quantum Inf. Process. 14(2), 573 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Zhou, J.: Dynamics of tripartite geometric quantifiers of correlations in a quantum spin system. Phys. Rev. A 87(6) (2013)

  71. Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87(4), 042310 (2013)

    Article  ADS  Google Scholar 

  72. Tchoffo, M., Kenfack, L.T., Fouokeng, G.C., Fai, L.C.: Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise. Eur. Phys. J. Plus 131(10), 380 (2016)

    Article  Google Scholar 

  73. Lionel, T.K., Martin, T., Collince, F.G., Fai, L.C.: Effects of static noise on the dynamics of quantum correlations for a system of three qubits. Int. J. Mod. Phys. B p. 1750046 (2016)

  74. Sabin, C., Garcia-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48(3), 435 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  75. Cai, J.T., Abliz, A.: Tripartite correlations in a Heisenberg XXZ spin ring in thermal equilibrium. Phys. A 392(10), 2607 (2013)

    Article  Google Scholar 

  76. Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85(7), 1560 (2000)

    Article  ADS  Google Scholar 

  77. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44(10), 36 (1991)

    Article  Google Scholar 

  78. Serafini, A., Paris, M.G.A., Illuminati, F., Siena, S.D.: Quantifying decoherence in continuous variable systems. J. Opt. B: Quantum Semiclass. Opt. 7(4), R19 (2005)

    Article  ADS  Google Scholar 

  79. Bose, S., Vedral, V.: Mixedness and teleportation. Phys. Rev. A 61(4), 040101 (2000)

    Article  ADS  Google Scholar 

  80. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  81. Devoret, M.H., Martinis, J.M.: in Experimental Aspects of Quantum Computing, ed. by H.O. Everitt (Springer US, Boston, MA, 2005), p. 163203. https://doi.org/10.1007/0-387-27732-3-12

  82. Ramakrishna, V., Zhou, H.: On the exponential of matrices in su (4). J. Phys. A: Math. Gen. 39(12), 3021 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Niskanen, A.O., Harrabi, K., Yoshihara, F., Nakamura, Y., Lloyd, S., Tsai, J.S.: Quantum coherent tunable coupling of superconducting qubits. Science 316(5825), 723 (2007)

    Article  ADS  Google Scholar 

  84. Harris, R., Johansson, J., Berkley, A.J., Johnson, M.W., Lanting, T., Han, S., Bunyk, P., Ladizinsky, E., Oh, T., Perminov, I., Tolkacheva, E., Uchaikin, S., Chapple, E.M., Enderud, C., Rich, C., Thom, M., Wang, J., Wilson, B., Rose, G.: Experimental demonstration of a robust and scalable flux qubit. Phys. Rev. B 81(13), 134510 (2010)

    Article  ADS  Google Scholar 

  85. Amir, A., Lahini, Y., Perets, H.B.: Classical diffusion of a quantum particle in a noisy environment. Phys. Rev. E 79(5), 050105 (2009)

    Article  ADS  Google Scholar 

  86. Lahini, Y., Bromberg, Y., Christodoulides, D.N., Silberberg, Y.: Quantum correlations in two-particle Anderson localization. Phys. Rev. Lett. 105(16), 163905 (2010)

    Article  ADS  Google Scholar 

  87. Thompson, C., Vemuri, G., Agarwal, G.S.: Anderson localization with second quantized fields in a coupled array of waveguides. Phys. Rev. A 82(5), 053805 (2010)

    Article  ADS  Google Scholar 

  88. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81(5), 052107 (2010)

    Article  ADS  Google Scholar 

  89. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit Xstates. Phys. Rev. A 81(4), 042105 (2010)

    Article  ADS  Google Scholar 

  90. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Dynamics of quantum correlations in colored-noise environments. Phys. Rev. A 87(5), 052328 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsamouo Tsokeng Arthur.

Appendix: Explicit forms of the various density matrices

Appendix: Explicit forms of the various density matrices

  • Different environments coupling: For the case of local coupling to different environments with a static noise, we set \(x_A \ne x_B \ne x_C\), and the density matrix for the global system at time t is derived from:

    $$\begin{aligned} {\rho _{de}}\left( t\right) =\int _{d^{-}}^{d^{+}}\int _{d^{-}}^ {d^{+}}\int _{d^{-}}^{d^{+}}{\hbox {d}{x_{A}}\hbox {d}{x_{B}}\hbox {d}{x_{C}}P\left( {x_{A}}\right) P\left( {x_{B}}\right) P\left( {x_{C}}\right) \rho \left( {{x_{A}},{x_{B}},{x_{C}},t}\right) }\nonumber \\ \end{aligned}$$
    (29)

    where \( d^{\pm } = x_0 \pm \frac{{x_{m}}}{2} \) and \( \rho \left( {{x_{A}},{x_{B}},{x_{C}},t}\right) ={U}\left( {{x_{A}},{x_{B}},{x_{C}},t}\right) \rho (0)U^{\dagger }({x_{A}},{x_{B}},{x_{C}},t). \) Explicitly, \(\rho _{de}(t)\) reads:

    $$\begin{aligned} \rho _{de}(t)=\frac{1}{2}\begin{pmatrix} \alpha _{de} &{} \gamma _{de} &{} \gamma _{de} &{} \mu _{de} &{} \gamma _{de} &{} \mu _{de} &{} \mu _{de} &{} \alpha _{de}e^{6i\theta }\\ \gamma _{de}^{*} &{} \vartheta _{de} &{} \tau _{de} &{} \kappa _{de} &{} \tau _{de} &{} \kappa _{de} &{} \chi _{de} &{} \pi _{de}\\ \gamma _{de}^{*} &{} \tau _{de} &{} \vartheta _{de} &{} \kappa _{de} &{} \tau _{de} &{} \chi _{de} &{} \kappa _{de} &{} \pi _{de}\\ \mu _{de}^{*} &{} \kappa _{de}^{*} &{} \kappa _{de}^{*} &{} \vartheta _{de} &{} \chi _{de}^{*} &{} \tau _{de} &{} \tau _{de} &{} \varepsilon _{de}\\ \gamma _{de}^{*} &{} \tau _{de} &{} \tau _{de} &{} \chi _{de} &{} \vartheta _{de} &{} \kappa _{de} &{} \kappa _{de} &{} \pi _{de}\\ \mu _{de}^{*} &{} \kappa _{de}^{*} &{} \chi _{de}^{*} &{} \tau _{de} &{} \kappa _{de}^{*} &{} \vartheta _{de} &{} \tau _{de} &{} \varepsilon _{de}\\ \mu _{de}^{*} &{} \chi _{de}^{*} &{} \kappa _{de}^{*} &{} \tau _{de} &{} \kappa _{de}^{*} &{} \tau _{de} &{} \vartheta _{de} &{} \varepsilon _{de}\\ \alpha _{de}e^{-6i\theta } &{} \pi _{de}^{*} &{} \pi _{de}^{*} &{} \varepsilon _{de}^{*} &{} \pi _{de}^{*} &{} \varepsilon _{de}^{*} &{} \varepsilon _{de}^{*} &{} \alpha _{de} \end{pmatrix} \end{aligned}$$
    (30)

    where

    $$\begin{aligned} \alpha _{de}=\frac{1}{4}\left[ 1+3p\beta _{de}\cos ^{2}(\nu tx_{0})\right] ,\quad \tau _{de}=\frac{p}{4}\beta _{de}\sin ^{2}\left( \nu tx_{0}\right) ,\\ \pi _{de}=\frac{p}{4}e^{4i\theta }\beta _{de}\left[ i\sin (2\nu tx_{0})-\sin ^{2}(\nu tx_{0})\right] ,\quad \chi _{de}=\pi _{de}e^{2i\theta } \\ \gamma _{de}=-\frac{p}{4}e^{2i\theta }\beta _{de}\left[ \sin ^{2}(\nu tx_{0})+i\sin (2\nu tx_{0})\right] ,\quad \mu _{de}=\gamma _{de}e^{2i\theta } \\ \varepsilon _{de}=\frac{p}{4}e^{2i\theta }\beta _{de}\left[ -\sin ^{2}(\nu tx_{0})+i\sin (2\nu tx_{0})\right] ,\quad \kappa _{de}=\tau _{de}e^{2i\theta }\\ \vartheta _{de}=\frac{1}{4}\left[ 1-p\beta _{de}\cos ^{2}(\nu tx_{0})\right] ,\quad \beta _{de}=\left( \frac{2\sin \left( \nu tx_{m}/2\right) }{\nu tx_{m}}\right) ^{2} \end{aligned}$$
  • Common environment coupling: Here we set \(x_A = x_B = x_C = x\). The time-evolved state is derived from:

    $$\begin{aligned} {\rho _{ce}}\left( t\right) =\int _{d^{-}}^{d^{+}}{\hbox {d}{x} P\left( {x}\right) \rho \left( {{x},,t}\right) }, \end{aligned}$$
    (31)

    where \( \rho \left( {{x},t}\right) ={U}\left( {{x},t}\right) \rho (0) U^{\dag }\left( {x,t}\right) , \) and reads:

    $$\begin{aligned} \rho _{ce}(t)=\frac{1}{2}\begin{pmatrix}\alpha _{ce} &{} \,\,\gamma _{ce}\,\, &{} \,\,\gamma _{ce}\,\, &{} \,\,\mu _{ce}\,\, &{} \,\,\gamma _{ce}\,\, &{} \,\,\mu _{ce}\,\, &{} \,\,\mu _{ce}\,\, &{} \,\alpha _{ce}e^{6i\theta }\\ \gamma _{ce}^{*} &{} \vartheta _{ce} &{} \tau _{ce} &{} \chi _{ce} &{} \tau _{ce} &{} \chi _{ce} &{} \chi _{ce} &{} \pi _{ce}\\ \gamma _{ce}^{*} &{} \tau _{ce} &{} \vartheta _{ce} &{} \chi _{ce} &{} \tau _{ce} &{} \chi _{ce} &{} \chi _{ce} &{} \pi _{ce}\\ \mu _{ce}^{*} &{} \chi _{ce}^{*} &{} \chi _{ce}^{*} &{} \vartheta _{ce} &{} \chi _{ce}^{*} &{} \tau _{ce} &{} \tau _{ce} &{} \varepsilon _{ce}\\ \gamma _{ce}^{*} &{} \tau _{ce} &{} \tau _{ce} &{} \chi _{ce} &{} \vartheta _{ce} &{} \chi _{ce} &{} \chi _{ce} &{} \pi _{ce}\\ \mu _{ce}^{*} &{} \chi _{ce}^{*} &{} \chi _{ce}^{*} &{} \tau _{ce} &{} \chi _{ce}^{*} &{} \vartheta _{ce} &{} \tau _{ce} &{} \varepsilon _{ce}\\ \mu _{ce}^{*} &{} \chi _{ce}^{*} &{} \chi _{ce}^{*} &{} \tau _{ce} &{} \chi _{ce}^{*} &{} \tau _{ce} &{} \vartheta _{ce} &{} \varepsilon _{ce}\\ \alpha _{ce}e^{-6i\theta } &{} \pi _{ce}^{*} &{} \pi _{ce}^{*} &{} \varepsilon _{ce}^{*} &{} \pi _{ce}^{*} &{} \varepsilon _{ce}^{*} &{} \varepsilon _{ce}^{*} &{} \alpha _{ce} \end{pmatrix} \end{aligned}$$
    (32)

    with

    $$\begin{aligned} \alpha _{ce}= & {} \frac{1}{8}\left[ 2+3p\left\{ 1+\beta _{ce}\cos (2\nu tx_{0})\right\} \right] , \\ \gamma _{ce}= & {} -\frac{p}{8}e^{2i\theta }\left[ 1-\beta _{ce}\left\{ \cos (2\nu tx_{0})-2i\sin (2\nu tx_{0})\right\} \right] , \\ \tau _{ce}= & {} \frac{p}{8}\left[ 1-\beta _{ce}\cos (2\nu tx_{0})\right] ,\quad \mu _{ce}=\gamma _{ce}e^{2i\theta },\quad \varepsilon _{ce}=\pi _{ce}e^{-2i\theta }, \\ \pi _{ce}= & {} \frac{p}{8}e^{4i\theta }\left[ -1+\beta _{ce}\left\{ \cos (2\nu tx_{0})+2i\sin (2\nu tx_{0})\right\} \right] ,\quad \chi _{ce}=\tau _{ce}e^{2i\theta }, \\ \vartheta _{ce}= & {} \frac{1}{8}\left[ 2-p\left\{ 1+\beta _{ce}\cos (2\nu tx_{0})\right\} \right] \quad \text {and} \quad \beta _{ce}=\frac{\sin (\nu tx_{m})}{\nu tx_{m}}. \end{aligned}$$
  • Bipartite environments coupling: Here, \(x_A = x_B \ne x_C\), and the density matrix \(\rho _{be}\) is derived from:

    $$\begin{aligned} {\rho _{be}}\left( t\right) =\int _{d^{-}}^{d^{+}} {\int _{d^{-}}^{d^{+}}}{\hbox {d}{x_{A}}\hbox {d}{x_{C}} P\left( {x_{A}}\right) P\left( {x_{C}}\right) \rho \left( {{x_{A}},{x_{C}},t}\right) } \end{aligned}$$
    (33)

    where \( \rho \left( {{x_{A}},{x_{C}},t}\right) ={\mathcal {U}}\left( {{x_{A}},{x_{C}},t}\right) \rho (0)\mathcal {U}^{\dag }\left( {{x_{A}},{x_{C}},t}\right) . \) It finally reads:

    $$\begin{aligned} \rho _{be}(t)=\frac{1}{2}\begin{pmatrix}\alpha _{be} &{} \,\,\gamma _{be}\,\, &{} \,\,\mu _{be}\,\, &{} \,\,\lambda _{be}\,\, &{} \,\,\mu _{be}\,\, &{} \,\,\lambda _{be}\,\, &{} \,\,\pi _{be}\,\, &{} \,\tau _{be}\\ \gamma _{be}^{*} &{} \vartheta _{be} &{} \kappa _{be} &{} \xi _{be} &{} \kappa _{be} &{} \xi _{be} &{} \chi _{be} &{} \varLambda _{be}\\ \mu _{be}^{*} &{} \kappa _{be}^{*} &{} \varpi _{be} &{} \varXi _{de} &{} \eta _{be} &{} \varXi _{de} &{} \varDelta _{be} &{} \varepsilon _{be}\\ \lambda _{be}^{*} &{} \xi _{be}^{*} &{} \varXi _{de}^{*} &{} \varpi _{be} &{} \varXi _{de}^{*} &{} \eta _{be} &{} \kappa _{be}^{*} &{} T\\ \mu _{be}^{*} &{} \kappa _{be}^{*} &{} \eta _{be} &{} \varXi _{de} &{} \varpi _{be} &{} \varXi _{de} &{} \varDelta _{be} &{} \varepsilon _{be}\\ \lambda _{be}^{*} &{} \xi _{be}^{*} &{} \varXi _{de}^{*} &{} \eta _{be} &{} \varXi _{de}^{*} &{} \varpi _{be} &{} \kappa _{be}^{*} &{} T\\ \pi _{be}^{*} &{} \chi _{be}^{*} &{} \varDelta _{be}^{*} &{} \kappa _{be} &{} \varDelta _{be}^{*} &{} \kappa _{be} &{} \vartheta _{be} &{} \nu _{de}\\ \tau _{be}^{*} &{} \varLambda _{be}^{*} &{} \varepsilon _{be}^{*} &{} T^{*} &{} \varepsilon _{be}^{*} &{} T^{*} &{} \nu _{de}^{*} &{} \alpha _{be} \end{pmatrix}, \end{aligned}$$
    (34)

    where

    $$\begin{aligned} \alpha _{be}= & {} \frac{1}{8}\left[ 2+p\left\{ 1+\beta _{ce}\cos (2\nu tx_{0})+4\beta _{de}\cos ^{2}(\nu tx_{0})\right\} \right] , \\ \gamma _{be}= & {} \frac{p}{8}e^{2i\theta }\left[ -1+\beta _{ce}\cos (2\nu tx_{0})-2i\beta _{de}\sin (2\nu tx_{0})\right] ,\quad \pi _{be}=\gamma _{be}e^{2i\theta }, \\ \tau _{be}= & {} \frac{p}{8}e^{6i\theta }\left[ 3+\beta _{ce}\cos (2\nu tx_{0})+4\beta _{de}\cos ^{2}(\nu tx_{0})\right] ,\quad \varLambda _{be}=\gamma _{be}^{*}e^{6i\theta }, \\ \chi _{be}= & {} \frac{p}{8}e^{2i\theta }\left[ 3+\beta _{ce}\cos (2\nu tx_{0})-4\beta _{de}\cos ^{2}(\nu tx_{0})\right] ,\quad \nu _{de}=\varLambda _{be}e^{-2i\theta }, \\ \vartheta _{be}= & {} \frac{1}{8}\left[ 2+p\left\{ 1+\beta _{ce}\cos (2\nu tx_{0})-4\beta _{de}\cos ^{2}(\nu tx_{0})\right\} \right] , \\ \kappa _{be}= & {} \frac{ip}{8}\left[ -\beta _{ce}\sin (2\nu tx_{0})+2\beta _{de}\sin (\nu tx_{0})e^{-i\nu tx_{0}}\right] ,\quad \xi _{be}=\kappa _{be}e^{2i\theta }, \\ \mu _{be}= & {} -\frac{ip}{8}e^{2i\theta }\left[ \beta _{ce}\sin (2\nu tx_{0})+2\beta _{de}\sin (\nu tx_{0})e^{-i\nu tx_{0}}\right] ,\quad \varDelta _{be}=\kappa _{be}^{*}e^{2i\theta } \\ \varpi _{be}= & {} \frac{1}{8}\left[ 2-p\left\{ 1+\beta _{ce}\cos (2\nu tx_{0})\right\} \right] ,\quad \lambda _{be}=\mu _{be}e^{2i\theta }, \\ \eta _{be}= & {} \frac{p}{8}\left[ 1-\beta _{ce}\cos (2\nu tx_{0})\right] ,\quad \varXi _{de}=\eta _{be}e^{2i\theta }, \\ \varepsilon _{be}= & {} \frac{ip}{8}e^{4i\theta }\left[ \beta _{ce}\sin (2\nu tx_{0})+2\beta _{de}\sin (\nu tx_{0})e^{i\nu tx_{0}}\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arthur, T.T., Martin, T. & Fai, L.C. Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise. Quantum Inf Process 17, 136 (2018). https://doi.org/10.1007/s11128-018-1899-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1899-5

Keywords

Navigation