Skip to main content
Log in

Single-server blind quantum computation with quantum circuit model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Blind quantum computation (BQC) enables the client, who has few quantum technologies, to delegate her quantum computation to a server, who has strong quantum computabilities and learns nothing about the client’s quantum inputs, outputs and algorithms. In this article, we propose a single-server BQC protocol with quantum circuit model by replacing any quantum gate with the combination of rotation operators. The trap quantum circuits are introduced, together with the combination of rotation operators, such that the server is unknown about quantum algorithms. The client only needs to perform operations X and Z, while the server honestly performs rotation operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526 (2009)

  2. Morimae, T., Fujii, K.: Secure entanglement distillation for double-server blind quantum computation. Phys. Rev. Lett. 111, 020502 (2013)

    Article  ADS  Google Scholar 

  3. Li, Q., Chan, W.H., Wu, C.H., Wen, Z.H.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89, 040302 (2014)

    Article  ADS  Google Scholar 

  4. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  Google Scholar 

  5. Morimae, T., Fujii, K.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)

    Article  ADS  Google Scholar 

  6. Morimae, T., Dunjko, V., Kashefi, E.: Ground state blind quantum computation on AKLT states. Quantum Inf. Comput. 15, 200–234 (2015)

    MathSciNet  Google Scholar 

  7. Morimae, T.: Verification for measurement-only blind quantum computing. Phys. Rev. A 89, 060302 (2014)

    Article  ADS  Google Scholar 

  8. Hayashi, M., Morimae, T.: Verifiable measurement-only blind quantum computing with stabilizer testing. Phys. Rev. Lett. 115, 220502 (2015)

    Article  ADS  Google Scholar 

  9. Gheorghiu, A., Kashefi, E., Wallden, P.: Robustness and device independence of verifiable blind quantum computing. New J. Phys. 17, 083040 (2015)

    Article  ADS  Google Scholar 

  10. Fitzsimons, J.F., Kashefi, E.: Unconditionally Verifiable Blind Quantum Computations. arXiv:1203.5217v3 (2015)

  11. Hajdusek, M., Pérez-Delgado, C.A., Fitzsimons, J.F.: Device-independent verifiable blind quantum computation. arXiv:1502.02563v2 (2015)

  12. Fujii, K., Hayashi, M.: Verifiable fault-tolerance in measurement-based quantum computation. arXiv:1610.05216v1 (2016)

  13. Morimae, T.: Measurement-only verifiable blind quantum computing with quantum input verification. Phys. Rev. A 94, 042301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Takeuchi, Y., Fujii, K., Ikuta, R., Yamamoto, T., Imoto, N.: Blind quantum computation over a collective-noise channel. Phys. Rev. A 93, 052307 (2016)

    Article  ADS  Google Scholar 

  15. Mantri, A., Pérez-Delgado, C.A., Fitzsimons, J.F.: Optimal blind quantum computation. Phys. Rev. Lett. 111, 230502 (2013)

    Article  ADS  Google Scholar 

  16. Giovannetti, V., Maccone, L., Morimae, T., Rudolph, T.G.: Efficient universal blind quantum computation. Phys. Rev. Lett. 111, 230501 (2013)

    Article  ADS  Google Scholar 

  17. Dunjko, V., Kashefi, E., Leverrier, A.: Blind quantum computing with weak coherent pulses. Phys. Rev. Lett. 108, 200502 (2012)

    Article  ADS  Google Scholar 

  18. Sueki, T., Koshiba, T., Morimae, T.: Ancilla-driven universal blind quantum computation. Phys. Rev. A 87, 060301 (2013)

    Article  ADS  Google Scholar 

  19. Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L.: Symmetrically private information retrieval based on blind quantum computing. Phys. Rev. A 91, 052303 (2015)

    Article  ADS  Google Scholar 

  20. Pérez-Delgado, Carlos A., Fitzsimons, Joseph F.: Iterated gate teleportation and blind quantum computation. Phys. Rev. Lett. 114, 220502 (2015)

    Article  Google Scholar 

  21. Kashefi, E., Music, L., Wallden, P.: The Quantum Cut-and-Choose Technique and Quantum Two-Party Computation. ArXiv:1703.03754v1 (2017)

  22. Coladangelo, A., Grilo, A., Jeffery, S., Vidick, T.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation, with quasilinear resources. ArXiv:1708.07359v1 (2017)

  23. Huang, H.L., Bao, W.S., Li, T., Li, F.G., Fu, X.Q., Zhang, S., Zhang, H.L., Wang, X.: Universal blind quantum computation for hybrid system. Quantum Inf. Process. 16, 199 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Aaronson, S., Cojocaruy, A., Gheorghiuz, A., Kashefix, E.: On the implausibility of classical client blind quantum computing. ArXiv:1704.08482v1 (2017)

  25. Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of blind quantum computing. Science 335, 303 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Barz, S., Fitzsimons, J.F., Kashefi, E., Walther, P.: Experimental verification of quantum computation. Nat. Phys. 9, 727–731 (2013)

    Article  Google Scholar 

  27. Greganti, C., Roehsner, M.C., Barz, S., Morimae, T., Walther, P.: Demonstration of measurement-only blind quantum computing. New J. Phys. 18, 727–731 (2016)

    Article  Google Scholar 

  28. Huang, H.L., Zhao, Q., Ma, X.F., Liu, C., Su, Z.E., Wang, X.L., Li, L., Liu, N.L., Sanders, Barry C., Lu, C.Y., Pan, J.W.: Experimental blind quantum computing for a classical client. Phys. Rev. Lett. 119, 050503 (2017)

    Article  ADS  Google Scholar 

  29. Marshall, K., Jacobsen, Christian S., Schäfermeier, C., Gehring, T., Weedbrook, C., Andersen, Ulrik L.: Continuous-variable quantum computing on encrypted data. Nat. Commun. 7, 13795 (2016)

    Article  ADS  Google Scholar 

  30. Huang, H.L., Zhao, Y.W., Li, T., Li, F.G., Du, Y.T., Fu, X.Q., Zhang, S., Wang, X., Bao, W.S.: Homomorphic encryption experiments on IBM’s cloud quantum computing platform. Front. Phys. 12, 120305 (2017)

    Article  Google Scholar 

  31. Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Comput. 5, 456–466 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Broadbent, A.: Delegating private quantum computations. Can. J. Phys. 93, 941–946 (2015)

    Article  ADS  Google Scholar 

  33. Fisher, K.A.G., Broadbent, A., Shalm, L.K., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.J.: Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014)

    Article  ADS  Google Scholar 

  34. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Plan of China (Grant No. 2017YFB0802203), National Natural Science Foundation of China (Grant Nos. U1736203, 61732021, 61472165, 61373158, 61672014 and 61502200), Guangdong Provincial Engineering Technology Research Center on Network Security Detection and Defense (Grant No. 2014B090904067), Guangdong Provincial Special Funds for Applied Technology Research and Development and Transformation of Important Scientific and Technological Achieve (Grant No. 2016B010124009), Natural Science Foundation of Guangdong Province (Grant No. 2016A030313090), the Zhuhai Top Discipline–Information Security, Guangzhou Key Laboratory of Data Security and Privacy Preserving, Guangdong Key Laboratory of Data Security and Privacy Preserving, National Joint Engineering Research Center of Network Security Detection and Protection Technology, Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), under Grant No. U1501501, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Weng, J., Li, X. et al. Single-server blind quantum computation with quantum circuit model. Quantum Inf Process 17, 134 (2018). https://doi.org/10.1007/s11128-018-1901-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1901-2

Keywords

Navigation