Abstract
Blind quantum computation (BQC) enables the client, who has few quantum technologies, to delegate her quantum computation to a server, who has strong quantum computabilities and learns nothing about the client’s quantum inputs, outputs and algorithms. In this article, we propose a single-server BQC protocol with quantum circuit model by replacing any quantum gate with the combination of rotation operators. The trap quantum circuits are introduced, together with the combination of rotation operators, such that the server is unknown about quantum algorithms. The client only needs to perform operations X and Z, while the server honestly performs rotation operators.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526 (2009)
Morimae, T., Fujii, K.: Secure entanglement distillation for double-server blind quantum computation. Phys. Rev. Lett. 111, 020502 (2013)
Li, Q., Chan, W.H., Wu, C.H., Wen, Z.H.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89, 040302 (2014)
Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)
Morimae, T., Fujii, K.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)
Morimae, T., Dunjko, V., Kashefi, E.: Ground state blind quantum computation on AKLT states. Quantum Inf. Comput. 15, 200–234 (2015)
Morimae, T.: Verification for measurement-only blind quantum computing. Phys. Rev. A 89, 060302 (2014)
Hayashi, M., Morimae, T.: Verifiable measurement-only blind quantum computing with stabilizer testing. Phys. Rev. Lett. 115, 220502 (2015)
Gheorghiu, A., Kashefi, E., Wallden, P.: Robustness and device independence of verifiable blind quantum computing. New J. Phys. 17, 083040 (2015)
Fitzsimons, J.F., Kashefi, E.: Unconditionally Verifiable Blind Quantum Computations. arXiv:1203.5217v3 (2015)
Hajdusek, M., Pérez-Delgado, C.A., Fitzsimons, J.F.: Device-independent verifiable blind quantum computation. arXiv:1502.02563v2 (2015)
Fujii, K., Hayashi, M.: Verifiable fault-tolerance in measurement-based quantum computation. arXiv:1610.05216v1 (2016)
Morimae, T.: Measurement-only verifiable blind quantum computing with quantum input verification. Phys. Rev. A 94, 042301 (2016)
Takeuchi, Y., Fujii, K., Ikuta, R., Yamamoto, T., Imoto, N.: Blind quantum computation over a collective-noise channel. Phys. Rev. A 93, 052307 (2016)
Mantri, A., Pérez-Delgado, C.A., Fitzsimons, J.F.: Optimal blind quantum computation. Phys. Rev. Lett. 111, 230502 (2013)
Giovannetti, V., Maccone, L., Morimae, T., Rudolph, T.G.: Efficient universal blind quantum computation. Phys. Rev. Lett. 111, 230501 (2013)
Dunjko, V., Kashefi, E., Leverrier, A.: Blind quantum computing with weak coherent pulses. Phys. Rev. Lett. 108, 200502 (2012)
Sueki, T., Koshiba, T., Morimae, T.: Ancilla-driven universal blind quantum computation. Phys. Rev. A 87, 060301 (2013)
Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L.: Symmetrically private information retrieval based on blind quantum computing. Phys. Rev. A 91, 052303 (2015)
Pérez-Delgado, Carlos A., Fitzsimons, Joseph F.: Iterated gate teleportation and blind quantum computation. Phys. Rev. Lett. 114, 220502 (2015)
Kashefi, E., Music, L., Wallden, P.: The Quantum Cut-and-Choose Technique and Quantum Two-Party Computation. ArXiv:1703.03754v1 (2017)
Coladangelo, A., Grilo, A., Jeffery, S., Vidick, T.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation, with quasilinear resources. ArXiv:1708.07359v1 (2017)
Huang, H.L., Bao, W.S., Li, T., Li, F.G., Fu, X.Q., Zhang, S., Zhang, H.L., Wang, X.: Universal blind quantum computation for hybrid system. Quantum Inf. Process. 16, 199 (2017)
Aaronson, S., Cojocaruy, A., Gheorghiuz, A., Kashefix, E.: On the implausibility of classical client blind quantum computing. ArXiv:1704.08482v1 (2017)
Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of blind quantum computing. Science 335, 303 (2012)
Barz, S., Fitzsimons, J.F., Kashefi, E., Walther, P.: Experimental verification of quantum computation. Nat. Phys. 9, 727–731 (2013)
Greganti, C., Roehsner, M.C., Barz, S., Morimae, T., Walther, P.: Demonstration of measurement-only blind quantum computing. New J. Phys. 18, 727–731 (2016)
Huang, H.L., Zhao, Q., Ma, X.F., Liu, C., Su, Z.E., Wang, X.L., Li, L., Liu, N.L., Sanders, Barry C., Lu, C.Y., Pan, J.W.: Experimental blind quantum computing for a classical client. Phys. Rev. Lett. 119, 050503 (2017)
Marshall, K., Jacobsen, Christian S., Schäfermeier, C., Gehring, T., Weedbrook, C., Andersen, Ulrik L.: Continuous-variable quantum computing on encrypted data. Nat. Commun. 7, 13795 (2016)
Huang, H.L., Zhao, Y.W., Li, T., Li, F.G., Du, Y.T., Fu, X.Q., Zhang, S., Wang, X., Bao, W.S.: Homomorphic encryption experiments on IBM’s cloud quantum computing platform. Front. Phys. 12, 120305 (2017)
Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Comput. 5, 456–466 (2005)
Broadbent, A.: Delegating private quantum computations. Can. J. Phys. 93, 941–946 (2015)
Fisher, K.A.G., Broadbent, A., Shalm, L.K., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.J.: Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Acknowledgements
This work was supported by National Key R&D Plan of China (Grant No. 2017YFB0802203), National Natural Science Foundation of China (Grant Nos. U1736203, 61732021, 61472165, 61373158, 61672014 and 61502200), Guangdong Provincial Engineering Technology Research Center on Network Security Detection and Defense (Grant No. 2014B090904067), Guangdong Provincial Special Funds for Applied Technology Research and Development and Transformation of Important Scientific and Technological Achieve (Grant No. 2016B010124009), Natural Science Foundation of Guangdong Province (Grant No. 2016A030313090), the Zhuhai Top Discipline–Information Security, Guangzhou Key Laboratory of Data Security and Privacy Preserving, Guangdong Key Laboratory of Data Security and Privacy Preserving, National Joint Engineering Research Center of Network Security Detection and Protection Technology, Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), under Grant No. U1501501, and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, X., Weng, J., Li, X. et al. Single-server blind quantum computation with quantum circuit model. Quantum Inf Process 17, 134 (2018). https://doi.org/10.1007/s11128-018-1901-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1901-2