Abstract
The uncertainty principle in quantum mechanics is a fundamental relation with different forms, including Heisenberg’s uncertainty relation and Schrödinger’s uncertainty relation. We introduce the generalized Wigner–Yanase–Dyson correlation and the related quantities. Various properties of them are discussed. Finally, we establish several generalizations of uncertainty relation expressed in terms of the generalized Wigner–Yanase–Dyson skew information.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910–918 (1963)
Luo, S., Zhang, Q.: On skew information. IEEE Trans. Inf. Theory 50, 1778–1782 (2004)
Luo, S.: Heisenberg uncertainty relation for mixed states. Phys. Rev. A 72, 042110 (2005)
Furuichi, S., Yanagi, K., Kuriyama, K.: Trace inequalities on a generalized Wigner–Yanase skew information. J. Math. Anal. Appl. 356, 179–185 (2009)
Furuichi, S.: Schrödinger uncertainty relation with Wigner–Yanase skew information. Phys. Rev. A 82, 034101 (2010)
Yanagi, K.: Uncertainty relation on Wigner–Yanase–Dyson skew information. J. Math. Anal. Appl. 365, 12–18 (2010)
Yanagi, K.: Wigner–Yanase–Dyson skew information and uncertainty relation. J. Phys. Conf. Ser. 201, 012015 (2010)
Ko, C.K., Yoo, H.J.: Uncertainty relation associated with a monotone pair skew information. J. Math. Anal. Appl. 383, 208–214 (2011)
Furuichi, S., Yanagi, K.: Schrödinger uncertainty relation, Wigner–Yanase–Dyson skew information and metric adjusted correlation measure. J. Math. Anal. Appl. 388, 1147–1156 (2012)
Chen, B., Fei, S.M., Long, G.L.: Sum uncertainty relations based on Wigner–Yanase skew information. Quantum Inf. Process. 15(6), 2639–2648 (2016)
Chen, B., Cao, N.P., Fei, S.M., Long, G.L.: Variance-based uncertainty relations for incompatible observables. Quantum Inf. Process. 15, 3909–3917 (2016)
Cheng, W.W., Du, Z.Z., Gong, L.Y., Zhao, S.M., Liu, J.M.: Signature of topological quantum phase transitions via Wigner–Yanase skew information. Europhys. Lett. 108, 46003 (2014)
Guo, J.L., Wei, J.L., Qin, W., Mu, Q.X.: Examining quantum correlations in the XY spin chain by local quantum uncertainty. Quantum Inf. Process. 14, 1429–1442 (2015)
Cheng, W.W., Zhang, Z.J., Gong, L.Y., Zhao, S.M.: Universal role of quantum uncertainty in Anderson metal–insulator transition. Ann. Phys. 370, 67 (2016)
Müller, M., Rotter, I.: Phase lapses in open quantum systems and the non-Hermitian Hamilton operator. Phys. Rev. A 80(4), 042705 (2009)
Rotter, I.: A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor. 42, 153001 (2009)
Alber, G., Delgado, A., Gisin, N., Jex, I.: Generalized quantum XOR-gate for quantum teleportation and state purification in arbitrary dimensional Hilbert spaces. Quantum Phys. arXiv:quant-ph/0008022v1 (2000)
Long, G.L.: General quantum interference principle and duality computer. Commun. Theor. Phys. 45, 825 (2006)
Guo, Z.H., Cao, H.X., Chen, Z.L., Yin, J.C.: Operational properties and matrix representations of quantum measures. Chin. Sci. Bull. 56, 1671 (2011)
Guo, Z.H., Cao, H.X.: Existence and construction of a quantum channel with given inputs and outputs. Chin. Sci. Bull. 57, 4346–4350 (2012)
Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)
Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)
Moiseyev, N.: Non-Hermitian Quantum Mechanics. Cambridge University Press, Cambridge (2011)
Matzkin, A.: Weak measurements in non-Hermitian systems. J. Phys. A Math. Theor. 45, 444023 (2012)
Pati, A.K., Singh, U., Sinha, U.: Measuring non-Hermitian operators via weak values. Phys. Rev. A 92, 052120 (2015)
Rastegin, A.E.: Entropic uncertainty relations and quasi-Hermitian operators. J. Phys. A Math. Theor. 45, 444026 (2012)
Dey, S., Fring, A., Khantoul, B.: Hermitian versus non-Hermitian representations for minimal length uncertainty relations. J. Phys. A Math. Theor. 46, 335304 (2013)
Dou, Y.N., Du, H.K.: Generalizations of the Heisenberg and Schrödinger uncertainty relations. J. Math. Phys. 54, 103508 (2013)
Dou, Y.N., Du, H.K.: Note on the Wigner–Yanase–Dyson skew information. Int. J. Theor. Phys. 53, 952–958 (2014)
Li, Q., Cao, H.X., Du, H.K.: A generalization of Schrödinger’s uncertainty relation described by the Wigner–Yanase skew information. Quantum Inf. Process. 14, 1513–1522 (2015)
Chen, Z.L., Liang, L.L., Li, H.J., Wang, W.H.: A generalized uncertainty relation. Int. J. Theor. Phys. 54, 2644–2651 (2015)
Chen, Z.L., Liang, L.L., Li, H.J., Wang, W.H.: Two generalized Wigner–Yanase skew information and their uncertainty relations. Quantum Inf. Process. 15, 5107–5118 (2016)
Gudder, S.: Operator probability theory. Int. J. Pure Appl. Math. 39, 511–525 (2007)
Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007)
Acknowledgements
This subject was supported by the SRP for the Ningxia Universities (No. NGY2017156).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fan, Y., Cao, H., Wang, W. et al. Uncertainty relations with the generalized Wigner–Yanase–Dyson skew information. Quantum Inf Process 17, 157 (2018). https://doi.org/10.1007/s11128-018-1906-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1906-x