Skip to main content
Log in

Two-party quantum key agreement protocols under collective noise channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, quantum communication has become a very popular research field. The quantum key agreement (QKA) plays an important role in the field of quantum communication, based on its unconditional security in terms of theory. Among all kinds of QKA protocols, QKA protocols resisting collective noise are widely being studied. In this paper, we propose improved two-party QKA protocols resisting collective noise and present a feasible plan for information reconciliation. Our protocols’ qubit efficiency has achieved 26.67%, which is the best among all the two-party QKA protocols against collective noise, thus showing that our protocol can improve the transmission efficiency of quantum key agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE international conference on computers. Systems and signal processing, pp. 175–179 (1984)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Mohajer, R., Eslami, Z.: Cryptanalysis of a multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 16(8), 197 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149 (2004)

    Article  Google Scholar 

  5. Tsai, C., Hwang, T.: On quantum key agreement protocol. R.O.C, Technical Report, C-S-I-E, NCKU, Taiwan (2009)

  6. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  7. Sun, Z., Huang, H.J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J. Quantum Inf. 15(03), 1750018 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, B., Guo, G., Lin, S.: Multi-party quantum key agreement with teleportation. Mod. Phys. Lett. B 31(10), 1750102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cao, H., Ma, W.: Multiparty quantum key agreement based on quantum search algorithm. Sci. Rep. 7, 45046 (2017)

    Article  ADS  Google Scholar 

  11. Cai, B., Guo, G., Lin, S., Zuo, H., Yu, C.: Multipartite quantum key agreement over collective noise channels. IEEE Photonics J. 10(1), 1–11 (2018)

    Article  Google Scholar 

  12. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13, 649–663 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chang, C.H., Yang, C.W., Hwang, T.: Trojan horse attack free fault-tolerant quantum key distribution protocols using ghz states. Int. J. Theor. Phys. 55(9), 1–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science (New York, N.Y.) 290(5491), 498–501 (2000)

    Article  ADS  Google Scholar 

  16. Lo, H.K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2011)

    Article  Google Scholar 

  17. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4(5), 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn, pp. 528–607. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  19. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  20. Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. Lect. Notes Comput. Sci. 765, 410–423 (1994)

    Article  MATH  Google Scholar 

  21. Bennett, C.H.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (2006)

    Article  MathSciNet  Google Scholar 

  22. Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)

    Article  ADS  Google Scholar 

  24. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 361–364 (2006)

    Google Scholar 

  25. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 440–450 (2005)

    Google Scholar 

  26. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  27. Yamamoto, T., Shimamura, J., OZdemir, S.K., Koashi, M., Imoto, N.: Faithful qubit distribution assisted by one additional qubit against collective noise. Phys. Rev. Lett. 95(4), 040503 (2005)

    Article  ADS  Google Scholar 

  28. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Quantum cryptography. Physics 74(1), 145–195 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Gao.

Appendix

Appendix

1.1 Holevo’s bound [18]

Suppose Alice prepares a state \(\rho _X\) where \(X=0, 1, \dots , n\) with probabilities \(p_0, p_1, \dots , p_n\). Bob performs a measurement described by POVM (positive operator-valued measure) elements \(\{E_y \}=\{E_0, E_1,\dots , E_m \}\) on that state, with measurement outcome Y. The Holevo bound states that for any such measurement Bob may do:

$$\begin{aligned} H(X:Y)\le S(\rho )-\sum _x p_xS(\rho _x), \end{aligned}$$
(11)

where \(\rho =\sum _xp_x\rho _x\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Chen, XG. & Qian, SR. Two-party quantum key agreement protocols under collective noise channel. Quantum Inf Process 17, 140 (2018). https://doi.org/10.1007/s11128-018-1910-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1910-1

Keywords

Navigation