Skip to main content
Log in

A novel quantum solution to secure two-party distance computation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Secure Two-Party Distance Computation is an important primitive of Secure Multiparty Computational Geometry that it involves two parties, where each party has a private point, and the two parties want to jointly compute the distance between their points without revealing anything about their respective private information. Secure Two-Party Distance Computation has very important and potential applications in settings of high secure requirements, such as privacy-preserving Determination of Spatial Location-Relation, Determination of Polygons Similarity, and so on. In this paper, we present a quantum protocol for Secure Two-Party Distance Computation by using QKD-based Quantum Private Query. The security of the protocol is based on the physical principles of quantum mechanics, instead of difficulty assumptions, and therefore, it can ensure higher security than the classical related protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd Annual Symposium on Foundations of Computer Science, Chicago, USA, pp. 160–164. IEEE Computer Society Press, New York (1982)

  2. Goldwasser, S.: Multi party computations: past and present. In: Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing, pp. 1–6, New York (1997)

  3. Atallah, M.J., Du, W.: Secure multi-party computational geometry. In: Proceedings of 7th International Workshop on Algorithms and Data Structures, pp. 165–179. Springer, Berlin Heidelberg (2001)

  4. Frikken, K.B., Atallah, M.J.: Privacy preserving route planning. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, pp. 8–15. ACM, New York (2004)

  5. Li, S.D., Dai, Y.Q.: Secure two-party computational geometry. J. Comput. Sci. Technol. 20(2), 258–263 (2005)

    Article  MathSciNet  Google Scholar 

  6. Luo, Y.L., Huang, L.S., Zhong, H.: Secure two-party point-circle inclusion problem. J. Comput. Sci. Technol. 22(1), 88–91 (2007)

    Article  Google Scholar 

  7. Yang, B., Sun, A., Zhang, W.: Secure two-party protocols on planar circles. J. Inf. Comput. Sci. 8(1), 29–40 (2011)

    Google Scholar 

  8. Huang, H., Gong, T., Chen, P., et al.: Secure two-party distance computation protocols with a semihonest third party and randomization for privacy protection in wireless sensor networks. Int. J. Distrib. Sens. Netw. 11(7), 475150 (2015)

    Article  Google Scholar 

  9. Huang, H., Gong, T., Chen, P., et al.: Secure two-party distance computation protocol based on privacy homomorphism and scalar product in wireless sensor networks. Tsinghua Sci. Technol. 21(4), 385–396 (2016)

    Article  Google Scholar 

  10. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–134. IEEE, New York (1994)

  11. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, Coimbra, Portugal, pp. 212–219. ACM, New York (1996)

  12. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1995), pp. 41–50 (1995)

  13. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. J. ACM 45, 41–50 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60, 592–629 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154 (1997)

    Article  ADS  Google Scholar 

  16. Colbeck, R.: Impossibility of secure two-party classical computation. Phys. Rev. A 76(6), 062308 (2007)

    Article  ADS  Google Scholar 

  17. Buhrman, H., Christandl, M., Schaffner, C.: Complete insecurity of quantum protocols for classical two-party computation. Phys. Rev. Lett. 109(16), 160501 (2012)

    Article  ADS  Google Scholar 

  18. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100(23), 230502 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84(2), 022313 (2011)

    Article  ADS  Google Scholar 

  20. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011)

    Article  ADS  Google Scholar 

  21. Scarani, V., Acin, A., Ribordy, G., et al.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92(5), 057901 (2004)

    Article  ADS  Google Scholar 

  22. Gao, F., Liu, B., Wen, Q.Y., et al.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20(16), 17411–17420 (2012)

    Article  ADS  Google Scholar 

  23. Zhang, J.L., Guo, F.Z., Gao, F., et al.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88(2), 022334 (2013)

    Article  ADS  Google Scholar 

  24. Yang, Y.G., Sun, S.J., Xu, P., et al.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13(3), 805–813 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Yang, Y.G., Zhang, M.O., Yang, R.: Private database queries using one quantum state. Quantum Inf. Process. 14(3), 1017–1024 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58(10), 100301 (2015)

    Article  Google Scholar 

  27. Rao, M.V.P., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A 87(1), 012331 (2013)

    Article  ADS  Google Scholar 

  28. Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2015)

    Article  Google Scholar 

  29. Yang, Y.G., Liu, Z.C., Chen, X.B., et al.: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15(9), 3833–3840 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Chan, P., Lucio-Martinez, I., Mo, X., et al.: Performing private database queries in a real-world environment using a quantum protocol. Sci. Rep. 4, 5233 (2014)

    Article  Google Scholar 

  31. Sun, S.J., Yang, Y.G., Zhang, M.O.: Relativistic quantum private database queries. Quantum Inf. Process. 14(4), 1443–1450 (2015)

    Article  ADS  MATH  Google Scholar 

  32. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)

    Article  ADS  Google Scholar 

  33. Maitra, A., Paul, G., Roy, S.: Device-independent quantum private query. Phys. Rev. A 95(4), 042344 (2017)

    Article  ADS  Google Scholar 

  34. Zhao, L.Y., Yin, Z.Q., Chen, W., et al.: Loss-tolerant measurement-device-independent quantum private queries. Sci. Rep. 7, 39733 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61772001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-hua Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Zw., Shi, Rh., Wang, Ph. et al. A novel quantum solution to secure two-party distance computation. Quantum Inf Process 17, 145 (2018). https://doi.org/10.1007/s11128-018-1911-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1911-0

Keywords

Navigation