Skip to main content
Log in

Bell-state generation on remote superconducting qubits with dark photons

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a scheme to generate the Bell state deterministically on remote transmon qubits coupled to different 1D superconducting resonators connected by a long superconducting transmission line. Using the coherent evolution of the entire system in the all-resonance regime, the transmission line need not to be populated with microwave photons which can robust against the long transmission line loss. This lets the scheme more applicable to the distributed quantum computing on superconducting quantum circuit. Besides, the influence from the small anharmonicity of the energy levels of the transmon qubits can be ignored safely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)

    Google Scholar 

  2. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  MATH  Google Scholar 

  3. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264 (2003)

    Article  ADS  Google Scholar 

  4. Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express 21, 17671 (2013)

    Article  ADS  Google Scholar 

  5. Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344 (1998)

    Article  ADS  Google Scholar 

  6. Long, G.L., Xiao, L.: Experimental realization of a fetching algorithm in a 7-qubit NMR spin Liouville space computer. J. Chem. Phys. 119, 8473 (2003)

    Article  ADS  Google Scholar 

  7. Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    Article  ADS  Google Scholar 

  8. Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730 (2010)

    Article  ADS  Google Scholar 

  9. Yang, W.L., Yin, Z.Q., Xu, Z.Y., Feng, M., Du, J.F.: One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cav- ity. Appl. Phys. Lett. 96, 241113 (2010)

    Article  ADS  Google Scholar 

  10. Wei, H.R., Long, G.L.: Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators. Phys. Rev. A 91, 032324 (2015)

    Article  ADS  Google Scholar 

  11. Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)

    Article  ADS  Google Scholar 

  12. Han, X., Guo, Q., Zhu, A.D., Zhang, S., Wang, H.F.: Effective W-state fusion strategies in nitrogen-vacancy centers via coupling to microtoroidal resonators. Opt. Express 25, 17701 (2017)

    Article  ADS  Google Scholar 

  13. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University, Cambridge (1997)

    Book  MATH  Google Scholar 

  14. Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrody-namics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  15. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  16. Yu, L.B., Feng, J.S., Dong, P., Li, D.C., Cao, Z.L.: Robust quantum storage and retrieval in a hybrid system by controllable Stark-chirped rapid adiabatic passages. Quantum Inf. Process 14, 3303 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Chang, J.B., Vissers, M.R., Córcoles, A.D., Sandberg, M., Gao, J.S., Abraham, D.W., Chow, J.M., Gambetta, J.M., Rothwell, M.B., Keefe, G.A., Steffen, M., Pappas, D.P.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103, 012602 (2013)

    Article  ADS  Google Scholar 

  18. Chow, J.M., Gambetta, J.M., Magesan, E., Abraham, D.W., Cross, A.W., Johnson, B.R., Masluk, N.A., Ryan, C.A., Smolin, J.A., Srinivasan, S.J., Steffen, M.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5, 4015 (2014)

    Article  ADS  Google Scholar 

  19. Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature (London) 519, 66 (2015)

    Article  ADS  Google Scholar 

  20. Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P.J.J., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Zhao, J., Palmstrøm, C.J., Martinis, J.M., Cleland, A.N.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)

    Article  ADS  Google Scholar 

  21. Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)

    Article  ADS  Google Scholar 

  22. Adhikari, P., Hafezi, M., Taylor, J.M.: Nonlinear optics quantum computing with circuit QED. Phys. Rev. Lett. 110, 060503 (2013)

    Article  ADS  Google Scholar 

  23. DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240 (2009)

    Article  ADS  Google Scholar 

  24. Haack, G., Helmer, F., Mariantoni, M., Marquardt, F., Solano, E.: Resonant quantum gates in circuit quantum electrodynamics. Phys. Rev. B 82, 024514 (2010)

    Article  ADS  Google Scholar 

  25. Strauch, F.W.: Quantum logic gates for superconducting resonator qudits. Phys. Rev. A 84, 052313 (2011)

    Article  ADS  Google Scholar 

  26. Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)

    Article  Google Scholar 

  27. Xue, Z.Y., Zhou, J., Wang, Z.D.: Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits. Phys. Rev. A 92, 022320 (2015)

    Article  ADS  Google Scholar 

  28. Xue, Z.Y., Gu, F.L., Hong, Z.P., Yang, Z.H., Zhang, D.W., Hu, Y., You, J.Q.: Nonadiabatic holonomic quantum computation with dressed-state qubits. Phys. Rev. Appl. 7, 054022 (2017)

    Article  ADS  Google Scholar 

  29. Steffen, M., Ansmann, M., Bialczak, R.C., Katz, N., Lucero, E., McDermott, R., Neeley, M., Weig, E.M., Cleland, A.N., Martinis, J.M.: Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. Cao, Y., Huo, W.Y., Ai, Q., Long, G.L.: Theory of degenerate three-wave mixing using circuit QED in solid-state circuits. Phys. Rev. A 84, 053846 (2011)

    Article  ADS  Google Scholar 

  31. Leghtas, Z., Vool, U., Shankar, S., Hatridge, M., Girvin, S.M., Devoret, M.H., Mirrahimi, M.: Stabilizing a Bell state of two superconducting qubits by dissipation engineering. Phys. Rev. A 88, 023849 (2013)

    Article  ADS  Google Scholar 

  32. Strauch, F.W.: All-resonant control of superconducting resonators. Phys. Rev. Lett. 109, 210501 (2012)

    Article  ADS  Google Scholar 

  33. Strauch, F.W., Onyango, D., Jacobs, K., Simmonds, R.W.: Entangled-state synthesis for su- perconducting resonators. Phys. Rev. A 85, 022335 (2012)

    Article  ADS  Google Scholar 

  34. Wang, W., Hu, L., Xu, Y., Liu, K., Ma, Y., Zheng, S.B., Vijay, R., Song, Y.P., Duan, L.M., Sun, L.: Converting quasiclassical states into arbitrary fock state superpositions in a superconducting circuit. Phys. Rev. Lett. 118, 223604 (2017)

    Article  ADS  Google Scholar 

  35. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Majer, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005)

    Article  ADS  Google Scholar 

  36. Johnson, B.R., Reed, M.D., Houck, A.A., Schuster, D.I., Bishop, L.S., Ginossar, E., Gambetta, J.M., DiCarlo, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Quantum non-demolition detection of single microwave photons in a circuit. Nat. Phys. 6, 663 (2010)

    Article  Google Scholar 

  37. Feng, W., Wang, P.Y., Ding, X.M., Xu, L.T., Li, X.Q.: Generating and stabilizing the Greenberger–Horne–Zeilinger state in circuit QED: joint measurement, Zeno effect, and feedback. Phys. Rev. A 83, 042313 (2011)

    Article  ADS  Google Scholar 

  38. Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007)

    Article  ADS  Google Scholar 

  39. Hua, M., Tao, M.J., Deng, F.G.: Quantum state transfer and controlled-phase gate on one- dimensional superconducting resonators assisted by a quantum bus. Sci. Rep. 6, 22037 (2016)

    Article  ADS  Google Scholar 

  40. Wu, C.W., Gao, M., Li, H.Y., Deng, Z.J., Dai, H.Y., Chen, P.X., Li, C.Z.: Scalable one-way quantum computer using on-chip resonator qubits. Phys. Rev. A 85, 042301 (2012)

    Article  ADS  Google Scholar 

  41. Yang, C.P., Su, Q.P., Han, S.Y.: Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A 86, 022329 (2012)

    Article  ADS  Google Scholar 

  42. Yang, C.P., Su, Q.P., Zheng, S.B., Nori, F.: Crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators. Phys. Rev. A 93, 042307 (2016)

    Article  ADS  Google Scholar 

  43. Galiautdinov, A., Korotkov, A.N., Martinis, J.M.: Resonator-zero-qubit architecture for superconducting qubits. Phys. Rev. A 85, 042321 (2012)

    Article  ADS  Google Scholar 

  44. Ciracf, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Unconditional preparation of entanglement between atoms in cascaded optical cavities. Phys. Rev. A 59, 4249 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  45. Clark, S., Peng, A., Gu, M., Parkins, S.: Unconditional preparation of entanglement between atoms in cascaded optical cavities. Phys. Rev. Lett. 91, 177901 (2003)

    Article  ADS  Google Scholar 

  46. Browne, D.E., Plenio, M.B., Huelga, S.F.: Robust creation of entanglement between ions in spatially separate cavities. Phys. Rev. Lett. 91, 067901 (2003)

    Article  ADS  Google Scholar 

  47. Duan, L.M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single- photon detections. Phys. Rev. Lett. 90, 253601 (2003)

    Article  ADS  Google Scholar 

  48. Mancini, S., Bose, S.: Engineering an interaction and entanglement between distant atoms. Phys. Rev. A 70, 022307 (2005)

    Article  ADS  Google Scholar 

  49. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  50. Xiao, Y.F., Lin, X.M., Gao, J., Yang, Y., Han, Z.F., Guo, G.C.: Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70, 042314 (2004)

    Article  ADS  Google Scholar 

  51. Lü, X.Y., Wu, J., Zheng, L.L., Zhan, Z.M.: Voltage-controlled entanglement and quantum- information transfer between spatially separated quantum-dotmolecules. Phys. Rev. A 83, 042302 (2011)

    Article  ADS  Google Scholar 

  52. Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)

    Article  ADS  Google Scholar 

  53. Clader, B.D.: Quantum networking of microwave photons using optical fibers. Phys. Rev. A 90, 012324 (2014)

    Article  ADS  Google Scholar 

  54. Yin, Z.Q., Yang, W.L., Sun, L., Duan, L.M.: Quantum network of superconducting qubits through an optomechanical interface. Phys. Rev. A 91, 012333 (2015)

    Article  ADS  Google Scholar 

  55. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Article  ADS  Google Scholar 

  56. Schreier, J.A., Houck, A.A., Koch, J., Schuster, D.I., Johnson, B.R., Chow, J.M., Gambetta, J.M., Majer, J., Frunzio, L., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502(R) (2008)

    Article  ADS  Google Scholar 

  57. Reed, M.D., DiCarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382 (2012)

    Article  ADS  Google Scholar 

  58. van Enk, S.J., Kimble, H.J., Cirac, J.I., Zoller, P.: Quantum communication with dark photons. Phys. Rev. A 59, 2659 (1999)

    Article  ADS  Google Scholar 

  59. Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)

    Article  ADS  Google Scholar 

  60. Yang, W.L., Hu, Y., Yin, Z.Q., Deng, Z.J., Feng, M.: Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit. Phys. Rev. A 83, 022302 (2011)

    Article  ADS  Google Scholar 

  61. Strand, J.D., Ware, M., Beaudoin, F., Ohki, T.A., Johnson, B.R., Blais, A., Plourde, B.L.T.: First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505(R) (2013)

    Article  ADS  Google Scholar 

  62. Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011)

    Article  ADS  Google Scholar 

  63. Hu, Y., Tian, L.: Deterministic generation of entangled photons in superconducting resonator arrays. Phys. Rev. Lett. 106, 257002 (2011)

    Article  ADS  Google Scholar 

  64. Peropadre, B., Zueco, D., Wulschner, F., Deppe, F., Marx, A., Gross, R., Ripoll, J.J.G.: Tunable coupling engineering between superconducting resonators: From sidebands to effective gauge fields. Phys. Rev. B 87, 134504 (2013)

    Article  ADS  Google Scholar 

  65. Johansson, J.R., Johansson, G., Nori, F.: Optomechanical-like coupling between superconducting resonators. Phys. Rev. A 90, 053833 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M. Hua was supported by the National Natural Science Foundation of China under Grants Nos. 11647042 and 11704281. H.R. Wei was supported by the National Natural Science Foundation of China under Grant No. 11604012. F.G. Deng was supported by the National Natural Science Foundation of China under Grants Nos. 11674033 and 11474026, and the Fundamental Research Funds for the Central Universities under Grant No. 2015KJJCA01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, M., Tao, MJ., Alsaedi, A. et al. Bell-state generation on remote superconducting qubits with dark photons. Quantum Inf Process 17, 151 (2018). https://doi.org/10.1007/s11128-018-1913-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1913-y

Keywords

Navigation