Skip to main content
Log in

Thermooptic two-mode interference device for reconfigurable quantum optic circuits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Reconfigurable large-scale integrated quantum optic circuits require compact component having capability of accurate manipulation of quantum entanglement for quantum communication and information processing applications. Here, a thermooptic two-mode interference coupler has been introduced as a compact component for generation of reconfigurable complex multi-photons quantum interference. Both theoretical and experimental approaches are used for the demonstration of two-photon and four-photon quantum entanglement manipulated with thermooptic phase change in TMI region. Our results demonstrate complex multi-photon quantum interference with high fabrication tolerance and quantum fidelity in smaller dimension than previous thermooptic Mach–Zehnder implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ono, T., Okamato, R., Takeuchi, S.: An entanglement enhanced microscope. Nat. Commun. 4, 2426 (2013)

    Article  ADS  Google Scholar 

  2. Liu, B.H., Sun, F.W., Gong, Y.X., Huang, Y.F., Ou, Z.Y., Guo, G.C.: Demonstration of three photon de Broglie wavelength by projection measurement. Phys. Rev. A 77(2), 023815 (2008)

    Article  ADS  Google Scholar 

  3. Alek, I., Ambar, O., Silberberg, Y.: High NOON states by mixing quantum and classical light. Science 328, 879–881 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649 (1996)

    Article  ADS  Google Scholar 

  5. Ursin, R., et al.: Entanglement based quantum communication over 144 km. Nat. Phys. 3, 481 (2007)

    Article  Google Scholar 

  6. Marcikle, I., de Riedmatten, H., Tittel, W., Zbinden, H., Gisin, N.: Long distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509 (2003)

    Article  ADS  Google Scholar 

  7. Dowling, J.: Qunatum metrology. Contemp. Phys. 49, 125–143 (2008)

    Article  ADS  Google Scholar 

  8. Maccone, L., Giovannetti, V.: Quantum metrology: beauty and the noisy beast. Nat. Phys. 7, 376–377 (2011)

    Article  Google Scholar 

  9. Brida, G., Genovese, M., Ruo, B.I.: Experimental realization of sub-shot nose quantum imaging. Nat. Photon. 4, 227–230 (2010)

    Article  ADS  Google Scholar 

  10. Tsang, M.: Quantum imaging beyond the diffraction limit by optical centroid measurements. Phys. Rev. Lett. 102, 253601 (2009)

    Article  ADS  Google Scholar 

  11. Ladd, T.D., et al.: Quantum computers. Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  12. Walther, P., et al.: Experimental one-way quantum computing. Nature 434, 169 (2005)

    Article  ADS  Google Scholar 

  13. Politi, A., et al.: Silica on silicon waveguide quantum circuits. Science 320, 646–649 (2008)

    Article  ADS  Google Scholar 

  14. Sahu, P.P.: Compact optical multiplexer using silicon nano-waveguide. IEEE J. Sel. Top. Quantum Electron. 15, 1537–1541 (2009)

    Article  Google Scholar 

  15. Wolfgramm, F., Vitelli, C., Beduini, F.A., Godbout, N., Mitchell, M.W.: Entanglement enhanced probing of a delicate material system”. Nat. Photon. 7, 28–32 (2012)

    Article  ADS  Google Scholar 

  16. O’Brien, J.L., Furusawa, A., Vuckovic, J.: Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009)

    Article  ADS  Google Scholar 

  17. Jachura, M., Chrapkiewicz, R., Demokowicz-Dobrzanski, R., Wasilewski, W.: Mode engineering for realistic quantum enhanced interferometry. Nat. Commun. 7, 11411 (2016)

    Article  ADS  Google Scholar 

  18. Shadbolt, et al.: Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45–49 (2012)

    Article  ADS  Google Scholar 

  19. Smith, B., Kundys, D., Thomas-Peter, N., Smith, P., Walmsley, I.: Phase controlled integrated photonic quantum circuits. Opt. Express 17, 264–267 (2009)

    Google Scholar 

  20. Mathews, J.C.F., Politi, A., Sefenov, A., O’Brien, J.L.: Manipulating multiphoton entanglement in waveguide quantum circuits. Nat. Photon. 3, 8–11 (2009)

    Article  Google Scholar 

  21. Peruzzo, A., et al.: Mulitmode quantum interference of photons in multiport integrated waveguides. Nat. Commun. 2(224), 1–6 (2011)

    Google Scholar 

  22. Sahu, P.P.: Compact multimode interference coupler with tapered waveguide geometry. Opt. Commun. 277, 295 (2007)

    Article  ADS  Google Scholar 

  23. Sahu, P.P.: Compact component for integrated quantum optic processing. Sci. Rep. 5(16276), 1–5 (2015)

    Google Scholar 

  24. Di Martino, G., Sonnefraud, Y., Tame, M.S., Kena-Cohen, S., Dieleman, F., Ozedemir, S.K., Kim, M.S., Maier, S.A.: Observations of quantum interference in the plasmonic Hong-Ou-Mandel effect. Phys. Rev. Appl. 1(034004), 1–5 (2014)

    Google Scholar 

  25. Marquier, F., Sauvan, C., Greffet, J.J.: Revisiting quantum optics with surface plasmons and plasmonic resonators. ACS Photon. 4, 2091–2101 (2017)

    Article  Google Scholar 

  26. Nishihara, H., Haruna, M., Suhara, T.: Optical Integrated Circuits. McGraw-Hill, New York (1989)

    Google Scholar 

  27. Tame, M.S., McEnery, K.R., Özdemir, Ş.K., Lee, J., Maier, S.A., Kim, M.S.: Quantum plasmonics. Nat. Phys. 9, 329–340 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Tezpur University for supporting infrastructure for the works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Sahu.

Appendix

Appendix

1.1 Derivation of two-photon quantum states

Two-photon state \( \left| {1,\,1} \right\rangle_{a2a1} \) is generated by launching one photon each into input \( a_{1} \) and \( a_{2} \) but there may be presence of \( \left| {0,\,0} \right\rangle_{a2a1} \). The input power is fixed in such a way that the chances of getting \( \left| {0,\,0} \right\rangle_{a2a1} \) are negligible. So the two-photon input state is written as \( \left| \psi \right\rangle_{in\,2} = \,\left| {1,\,1} \right\rangle_{a2a1} \) and after getting phase ϕ via thermooptic heating in arm b1c1 of MZ interferometer having TMI half-couplers (\( \Delta \theta = \pi /2 \)) in its both end the output two-photon state is written as

$$ \left| \psi \right\rangle_{{{\text{out}}_{2} }} = \left[ { - \cos (\varphi )\left| {1,1} \right\rangle_{b2b1} + \frac{1}{\sqrt 2 }\sin (\varphi )\left( {\left| {2,0} \right\rangle_{b2b1} - \left| {0,2} \right\rangle_{b2b1} } \right)} \right] $$
(7)

1.2 Derivation of four-photon quantum states

In generating four-photon quantum state \( \left| {2,\,2} \right\rangle_{a2a1} \), there may be presence of \( \left| {0,\,0} \right\rangle_{a2a1} \) and \( \left| {1,\,1} \right\rangle_{a2a1} \) quantum states and the input state of four-photon input state is represented as \( \left| \psi \right\rangle_{in\,4} = \sqrt {1 - \left| \gamma \right|^{2} } \left| {0,0} \right\rangle_{a2a1} + \gamma \left| {1,1} \right\rangle_{a2a1} + \gamma^{2} \left| {2,2} \right\rangle_{a2a1} \), where \( \gamma \) is a constant (0 < \( \gamma \) ≤ 1), which mainly depends nonlinearity and pump power. The pump power is raised to increase \( \gamma \) for enhancing multi-photon contribution and is applied in controlled fashion to have more \( \left| {2,\,2} \right\rangle_{a2a1} \) states in inputs of TMI coupler. As \( \gamma \) cannot be neglected with respect to \( \gamma^{2} \). So the output entanglement state is written as

$$ \begin{aligned} \left| \psi \right\rangle_{{{\text{out}}_{4} }} & = \gamma \left[ { - \cos (\varphi )\left| {1,1} \right\rangle_{b2b1} + \frac{1}{\sqrt 2 }\sin (\varphi )\left( {\left| {2,0} \right\rangle_{b2b1} - \left| {0,2} \right\rangle_{b2b1} } \right)} \right] \\ &\quad + \,\gamma^{2} \left[ {\sqrt {\frac{3}{4}} \sin^{2} (\varphi )[\left| {4,0} \right\rangle_{b2b1} + \left| {0,4} \right\rangle_{b2b1} ] + \sqrt {\frac{3}{2}} \cos (\varphi )\sin (\varphi )[\left| {3,1} \right\rangle_{b2b1} } \right. \\ &\quad \left. { - \,\left| {1,3} \right\rangle_{b2b1} ]\, + \left[1 - \frac{3}{2}\sin^{2} (\varphi )\right]\left| {2,2} \right\rangle_{b2b1} } \right] \\ \end{aligned} $$
(8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, P.P. Thermooptic two-mode interference device for reconfigurable quantum optic circuits. Quantum Inf Process 17, 150 (2018). https://doi.org/10.1007/s11128-018-1919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1919-5

Keywords

Navigation