Abstract
We present a quantum hash function in a quantum walk framework on Johnson graphs. In this quantum hash function, the message bit decides which coin operator, i.e., Grover operator or DFT operator, is applied on the coin at each step. Then a fixed conditional shift operator is applied to decide the movement of the walker. Compared with existing quantum-walk-based hash functions, the present hash function has a lower collision rate and quantum resource cost. It provides a clue for the construction of other cryptography protocols by introducing the quantum walk model into hash functions.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Knuth, D.: The Art of Computer Programming, Sorting and Searching, vol. 3, 2nd edn. Addison-Wesley, Boston (1998)
Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)
D. Gavinsky, T. Ito: Quantum fingerprints that keep secrets. Technical Report Cornell University Library. arXiv:1010.5342 (2010)
Ablayev, F., Vasiliev, A.: Cryptographic quantum hashing. Laser Phys. Lett. 11(2), 025202 (2014)
Ablayev, F., Ablayev, M., Vasiliev, A.: On the balanced quantum hashing. J. Phys: Conf. Ser. 681, 012019 (2016)
M. Ziatdinov: From graphs to keyed quantum hash functions. arXiv:1606.00256v1 (2016)
D. Aharonov, A. Ambainis, J. Kempe, et al.: Quantum walks on graphs. In: Proceedings of the 33rd ACM Symposium on Theory of Computing, pp. 50–59 (2001)
Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)
Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)
Tamascelli, D., Zanetti, L.: A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. J. Phys. A: Math. Theor. 47(32), 325302 (2014)
Li, D., Zhang, J., Guo, F.-Z., Huang, W., Wen, Q.-Y., Chen, H.: Discrete-time interacting quantum walks and quantum Hash schemes. Quantum Inf. Process. 12(3), 1501–1513 (2013)
Li, D., Zhang, J., Ma, X.W., Zhang, W.W., Wen, Q.Y.: Analysis of the two-particle controlled interacting quantum walks. Quantum Inf. Process. 12(6), 2167–2176 (2013)
Yang, Y.-G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016)
Xue, P., Sanders, B.C.: Two quantum walkers sharing coins. Phys. Rev. A 85, 022307 (2012)
Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)
Stefaňák, M., Barnett, S.M., Kollár, B., Kiss, T., Jex, I.: Directional correlations in quantum walks with two particles. New J. Phys. 13, 033029 (2011)
Li, D., Yang, Y.-G., Bi, J.-L., Yuan, J.-B., Xu, J.: Controlled alternate quantum walks based quantum Hash function. Sci. Rep. 8, 225 (2018)
Yang, Y.-G., Zhang, Y.-C., Xu, G., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: Improving the efficiency of quantum Hash function by dense coding of coin operators in discrete-time quantum walk. Sci. China-Phys. Mech. Astron. 61(3), 030312 (2018)
S. Aaronson: G. Phi. Fo. Fum. http://scottaaronson.com/blog/?p=2521. Accessed 13 May 2018
J.A. Kun: Quasi-polynomial time algorithm for graph isomorphism: the details. http://jeremykun.com/2015/11/12/a-quasipolynomial-time-algorithm-for-graph-isomorphism-the-details/. Accessed 13 May 2018
L. Babai: Graph isomorphism in quasi-polynomial time. arXiv:1512.03547
M. Bellare, T. Kohno: Hash function balance and its impact on birthday attacks. In: Eurocrypt 04, LNCS, vol. 3027, pp. 401–418 (2004)
M.J. Saarinen: A meeting-in-the-middle collision attack against the new FORK-256. In: Indocrypt 2007, LNCS, vol. 4859, pp. 10–17 (2007)
Dobbertin, H.: Cryptanalysis of MD4. J. Cryptol. 11(4), 253–271 (1998)
F. Chabaud, A. Joux: Differential collisions in SHA-0. In: Crypto’98, LNCS, vol. 1462, pp. 56–71 (1998)
Y. Sasaki, K. Aoki: Finding preimages in full MD5 faster than exhaustive search. In: Eurocrypt 2009, LNCS, vol. 5479, pp 134–152 (2009)
Acknowledgements
We thank Dr. Xiu-Bo Chen and Dr. Zheng Yuan for reviewing the original manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572053, 61671087, U1636106, 61602019, 61571226, 61701229, 61702367), Beijing Natural Science Foundation (Grant Nos. 4162005, 4182006), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170802), Jiangsu Postdoctoral Science Foundation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cao, WF., Zhang, YC., Yang, YG. et al. Constructing quantum Hash functions based on quantum walks on Johnson graphs. Quantum Inf Process 17, 156 (2018). https://doi.org/10.1007/s11128-018-1923-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1923-9